
The Neural Processes Family:
Translation Equivariance and

Output Dependencies

James Ryan Requeima

Department of Engineering
University of Cambridge

This dissertation is submitted for the degree of
Doctor of Philosophy

Sidney Sussex College December 1, 2022

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university.
This dissertation is my own work and contains nothing which is the outcome of work
done in collaboration with others, except as specified in the text and Acknowledgements.
This dissertation contains fewer than 65,000 words including appendices, bibliography,
footnotes, tables and equations and has fewer than 150 figures.

James Ryan Requeima
December 1, 2022

The Neural Processes Family:
Translation Equivariance and Output Dependencies

Most contemporary machine learning approaches use a model trained from scratch on a
particular task and a learning algorithm designed by hand. This approach has worked
very well with the advent of deep learning and in the presence of very large datasets
(Goodfellow et al., 2016). Recently, meta-learning has emerged as a machine learning
approach to learn both a model and a learning algorithm (Hospedales et al., 2021;
Schmidhuber, 1987) directly from data. Neural processes (Garnelo et al., 2018a,b) are
a family of meta-learning models which combine the flexibility of deep learning with
the uncertainty awareness of probabilistic models. Training using meta-learning allows
neural processes to apply deep neural networks to applications with smaller training sets
where they would typically overfit. Neural processes produce well-calibrated predictions,
enable fast inference at test time, and have flexible data-handling properties that make
them a good candidate for messy real-world datasets and applications.

However, this thesis focuses on addressing two shortcomings when applying neural
processes to real-world applications by i) incorporating translation equivariance into
the architecture of neural processes rather than requiring the model to learn this
inductive bias directly from data and ii) developing methods for neural processes
to parametrize rich predictive distributions that can model dependencies between
output-space variables and produce coherent samples.

This thesis makes four main contributions to the family of neural processes models.
First, we introduce the convolutional conditional neural process (ConvCNP). The
ConvCNP incorporates translation equivariance into its modelling assumptions by using
convolutional neural networks and improves training data efficiency and performance
when data is approximately stationary. Second, we propose the latent variable version of
the ConvCNP, the convolutional latent neural process (convLNP) that is able to model
epistemic uncertainty and output-space dependencies and able to produce coherent
function samples. We also propose an approximate maximum likelihood training
procedure for the ConvLNP improving upon the standard VI approximate inference

vi

technique used by latent neural processes at the time. Third, we propose the Gaussian
neural process (GNP) which models the predictive distribution with a full covariance
Gaussian. The GNP can model joint output-space dependencies like the ConvLNP
but avoids the issues associated with using latent variables. Training GNPs is much
more simple than the ConvLNP since it uses the same maximum likelihood technique
as standard conditional neural processes. Fourth, we introduce the autoregressive
neural process (AR NP). Rather than proposing a new neural process architecture
this method produces predictions at test time by evaluating existing neural process
models autoregressively via the product rule of probability. This method allows for the
use of existing, potentially already trained neural processes to model non-Gaussian
predictive distributions and produce coherent samples without any modifications to
the architecture or training procedure.

The efficacy of each of these methods is demonstrated through a series of synthetic
and real world experiments in climate science, population modelling, and medical
science applications. It can be seen in these applications that incorporating translation
equivariance as a modelling assumption and generating predictive distributions that
model output-space dependencies improves predictive performance.

James Ryan Requeima

For Bertie, Maude and Theo.

Acknowledgements

First I would like to thank my supervisor Rich. It’s common knowledge that one’s
relationship with their advisor will make or break your PhD experience and I couldn’t
have asked for a better one, so thank you. I would also like to thank my secondary
advisor Miguel who gave me my first taste of research and my first publication by
bringing me under his wing. I’d like to thank David for inspiring me to go into machine
learning and helping me to become a better researcher and writer.

Thanks to my friends and collaborators Wessel, Stratis, Jonathan, John, Andrew,
Will, Ambrish, Anna, and Tom. Your curiosity, openness and spirit of sharing has
made doing research in the CBL truly a pleasure. Thanks to my good friends Cozmin,
Em, Yann, Evan, Brendan and Maja for keeping me sane.

Thanks to my parents and family for the love and support. Thanks to Bertie,
Maude and Theo for keeping things interesting during my PhD. Finally thanks to
Antonia for helping me through all of the challenges along the way – I couldn’t have
done this without you.

Table of contents

List of figures xvii

List of tables xxix

1 Introduction 1
1.1 Motivation . 1
1.2 Overview and Main Contributions . 3
1.3 List of Publications . 5

2 Background 9
2.1 Meta-Learning and Stochastic Processes 9

2.1.1 Meta-Learning Problem Statement 11
2.1.2 Stochastic Processes . 11
2.1.3 Prediction Map Formulation . 13
2.1.4 Gaussian Processes . 13

2.2 Neural Processes . 14
2.2.1 Defining a Stochastic Process 15
2.2.2 Deep Sets . 15
2.2.3 Conditional Neural Processes 17
2.2.4 Latent Neural Processes . 21
2.2.5 Attentive Neural Processes . 24

2.3 Conclusion and Discussion . 25

3 Convolutional Conditional Neural Processes 27
3.1 Introduction . 27

3.1.1 Notation . 29
3.2 Translation Equivariance . 29
3.3 Convolutional Deep Sets . 30

3.3.1 Representations of Translation Equivariant Functions on Sets . 31

xii Table of contents

3.4 Convolutional Conditional Neural Processes 32
3.5 Experiments and Results . 35

3.5.1 Synthetic 1D Experiments . 36
3.5.2 PLAsTiCC Experiments . 37
3.5.3 Predator-Prey Models: Sim2Real 38
3.5.4 2D Image Completion Experiments 39

3.6 Conclusion and Discussion . 42

4 Convolutional Latent Neural Processes 45
4.1 Introduction . 45
4.2 Notation and Background . 47

4.2.1 Translation Equivariance and Stationarity 47
4.2.2 Convolutional Conditional Neural Processes 48

4.3 The Convolutional Latent Neural Process 48
4.3.1 Parametrizing Translation Equivariant Maps to Stochastic Pro-

cesses Using ConvLNPs . 49
4.3.2 Maximum Likelihood Learning of ConvLNPs 53

4.4 The Latent Variable Interpretation of ConvLNPs 55
4.4.1 A Variational Lower Bound Approach to ConvLNPs 55
4.4.2 Maximum-Likelihood vs Variational Lower Bound Maximization

for Training NPs . 57
4.4.3 Effect of Number of Samples Used During Training 58
4.4.4 Effect of Number of Samples Used for Evaluation 58

4.5 Experiments and Results . 60
4.5.1 1D Regression . 62
4.5.2 Image Completion . 63
4.5.3 Environmental Data . 64

4.6 Conclusion and Discussion . 65

5 Gaussian Neural Processes 67
5.1 Introduction . 67
5.2 Gaussian Neural Processes . 68
5.3 Non-Gaussian prediction maps . 71
5.4 Computation time and memory comparison 72
5.5 Experiments and Results . 73

5.5.1 Gaussian synthetic experiments 74
5.5.2 Predator-Prey experiments . 76

Table of contents xiii

5.5.3 Electroencephalogram experiments 78
5.5.4 Temperature downscaling for environmental modelling 79

5.6 Conclusion and Discussion . 82

6 Autoregressive Neural Processes 85
6.1 Introduction . 85
6.2 Autoregressive Conditional Neural Processes 88
6.3 Connections to Other Neural Distribution Estimators 93
6.4 Experiments and Results . 95

6.4.1 Synthetically Generated Gaussian and Non-Gaussian Data . . . 95
6.4.2 Sim-to-Real Transfer with the Lotka–Volterra Equations 96
6.4.3 Electroencephalogram experiments 97
6.4.4 Environmental Modelling . 98

6.5 Conclusion and Discussion . 101

7 Conclusion and Discussion 103
7.1 Summary of Contributions . 103
7.2 Future Work . 105

References 109

Appendix A Chapter 3 Supplementary Material 125
A.1 Theoretical Results and Proofs . 125

A.1.1 The Quotient Space An/Sn . 126
A.1.2 Embeddings of Sets Into an RKHS 128
A.1.3 Proof of Thm 1 . 134

A.2 Baseline Neural Process Models . 136
A.3 1-Dimensional Experiments . 137

A.3.1 CNN Architectures . 137
A.3.2 Synthetic 1d Experimental Details and Additional Results . . . 139
A.3.3 PLAsTiCC Experimental Details 142
A.3.4 Predator–Prey Experimental Details 142

A.4 Image Experimental Details and Additional Results 144
A.4.1 Experimental Details . 144
A.4.2 Zero Shot Multi MNIST (ZSMM) data 145
A.4.3 ACNP and ConvCNP Qualitative Comparison 146
A.4.4 Ablation Study: First Layer . 146
A.4.5 Qualitative Analysis of the First Filter 148

xiv Table of contents

A.4.6 Effect of Receptive Field on Translation Equivariance 148

Appendix B Chapter 4 Supplementary Material 151
B.1 Formal Definitions and Set-up . 151
B.2 Stationary Processes and Translation Equivariance 152
B.3 Translation Equivariance of the ConvLNP 153
B.4 Experimental Details on 1D Regression 154
B.5 Additional Results on 1D Regression 158
B.6 Experimental Details on Image Completion 158

B.6.1 Data Details . 158
B.6.2 Training Details . 160
B.6.3 Architecture Details . 160

B.7 Additional results on image completion. 162
B.8 Experimental Details on Environmental Data 163

B.8.1 Data Details . 163
B.8.2 Gaussian Process Baseline . 164
B.8.3 ConvLNP Architecture and Training Details 164
B.8.4 Prediction and Sampling . 165
B.8.5 Bayesian Optimization . 165

B.9 Additional Figures for Environmental Data 166
B.9.1 Predictive density . 166
B.9.2 Additional Samples . 166

Appendix C Chapter 5 Supplementary Material 173
C.1 Additional theoretical considerations 173

C.1.1 Translation equivariance of the ConvGNP 173
C.1.2 Normalising flows and general invertible maps 175

C.2 Gaussian synthetic experiments . 176
C.3 Predator-prey synthetic experiments 179
C.4 Electroencephalogram experiments . 181
C.5 Environmental experiments . 183

C.5.1 Experimental design . 183
C.5.2 Data . 184
C.5.3 Neural architectures and training 184
C.5.4 Additional samples . 185

Table of contents xv

Appendix D Chapter 6 Supplementary Material 187
D.1 Proof of Proposition 2 . 187
D.2 Proof of Proposition 3 . 189
D.3 Illustration of the AR procedure . 190
D.4 Number and Order of Target Points . 191

D.4.1 Effects of the Number of Target Points 191
D.4.2 Effects of the Ordering of Target Points 192
D.4.3 Analysis of AR CNPs for CNPs with Gaussian Marginals 192
D.4.4 Effect of the random ordering on the spread of the log-likelihood 193

D.5 Details for Figure 6.3 . 196
D.6 Description of Models . 197
D.7 Training, Cross-Validation, and Evaluation Protocols 200
D.8 Details of Synthetic Experiments . 202

D.8.1 Description of Experiments . 202
D.8.2 Multi-Modality of Predictions by AR ConvCNP 204
D.8.3 Full Results . 204

D.9 Details of Sim-to-Real Transfer Experiments 220
D.9.1 Description of Experiment . 220
D.9.2 Full Results . 223

D.10 Details of Electroencephalography Experiments 224
D.11 Details of Environmental Data Assimilation Experiment 226

D.11.1 Data considerations . 226
D.11.2 Model considerations . 227
D.11.3 Antarctic cloud cover model samples 228

D.12 Details of Climate Downscaling Experiments 231
D.12.1 Description of Experiment . 231
D.12.2 Multiscale Convolutional Architecture 233
D.12.3 Architectures . 235
D.12.4 Training Details . 236

D.13 Alternate AR Procedure with Auxiliary Data 237
D.13.1 Generated Data . 238
D.13.2 Training . 239
D.13.3 Results . 239

Index 243

List of figures

2.1 Graphical model for the LNP with no distinction between context and
target data (left). Graphical model for the CNP (centre). Graphical
model for the LNP interpreting the LNP objective as a valid ELBO
(right). The only distinction between the centre and right figures is the
treatment of the variable z. All graphical models depict a single dataset
or task. 17

2.2 Computation diagram for the CNP. The context set and target set are
indicated by blue and green variables respectively with shaded variables
being observed. Boxes in the diagram are learned components of the
CNP architecture. 19

2.3 Samples from a CNP (left) which makes independent predictions, and a
Gaussian process (right) designed to generate function samples (blue)
which are coherent. Coherent samples are often necessary for downstream
estimation tasks. 20

2.4 Computation diagram for the LNP. The context set and target set are
indicated by blue and green variables respectively with shaded variables
being observed. Boxes in the diagram are learned components of the
CNP architecture and ∼ indicates a sampling procedure to produce
samples of the latent variable z. 22

2.5 Computation diagram showing the prediction for a single target point
x

(t)
j for the ALNP. The context set is indicated by blue and a single

target point is indicated by the green variable with shaded variables
being observed. Boxes in the diagram are learned components of the
CNP architecture and ∼ indicates the sampling procedure to produce
samples of the latent variable z. 24

3.1 Illustration of the ConvCNP forward pass in the off-the-grid case . . . 33

xviii List of figures

3.2 Example functions learned by the AttnCNP (top row), and ConvCNP
(bottom row), when trained on a Matern–5

2 kernel with length scale
0.25 (first and second column) and sawtooth function (third and fourth
column). Columns one and three show the predictive posterior of the
models when data is presented in same range as training, with predictive
posteriors continuing beyond that range on either side. Columns two
and four show model predictive posteriors when presented with data
outside the training data range. Plots show means and two standard
deviations. 37

3.3 Left and centre: two samples from the Lotka–Volterra process (sim).
Right: ConvCNP trained on simulations and applied to the Hudson’s
Bay lynx-hare dataset (real). Plots show means and two standard
deviations. 38

3.4 ACNP performance on two samples from the Lotka–Volterra process
(sim). 39

3.5 Zero shot generalization to tasks that require translation equivariance. . 40
3.6 Qualitative evaluation of the ConvCNP(XL). For each dataset, an image

is randomly sampled, the first row shows the given context points while
the second is the mean of the estimated conditional distribution. From
left to right the first seven columns correspond to a context set with 3,
1%, 5%, 10%, 20%, 30%, 50%, 100% randomly sampled context points.
In the last two columns, the context sets respectively contain all the
pixels in the left and top half of the image. ConvCNPXL is shown
for all datasets besides ZSMM, for which we show the fully translation
equivariant ConvCNP. 44

4.1 ConvLNP encoder-decoder architecture. The encoder is a ConvCNP
which takes the context set as input (left panel) and outputs a single
sample of z (center panel). The decoder takes this as input and outputs
a predictive sample (right panel blue; two other samples shown in grey). 49

List of figures xix

4.2 Forward pass of a ConvLNP. Steps (1)-(4) depict sampling from the
encoder Eϕ, which is a ConvCNP. This involves: (1) computing a
functional representation of the context set, with separate ‘density’
and ‘data’ channels (described in Algorithm 2), (2) discretizing the
representation, (3) passing the representation through a CNN, which
outputs the parameters of independent Gaussian distributions spaced
on a grid, and (4) sampling from these distributions. However, the
samples at each grid point are independent of each other, hence in (5)
the samples are passed through another CNN, the decoder, to induce
dependencies, and then are smoothed out. 50

4.3 Interpolation performance (within training range) for context set sizes
uniformly sampled from {0, . . . , 50} of the ConvLNP and ALNP on
Matérn–5

2 samples. The models are trained with LML and LLNP for
various number of samples L. Models trained with LML are evaluated
with LML, while models trained with LLNP are evaluated with LML. At
evaluation, all bounds are estimated using 2,048 samples. 58

4.4 Log-likelihood bounds achieved by various combination of models and
training objectives when evaluated with LML and LIW for various num-
bers of samples L. Color indicates model. Solid lines correspond to
models trained and evaluated with LML. Dashed lines correspond to
models trained with LLNP and evaluated with LIW. Dotted lines corre-
spond to models trained with LLNP and evaluated with LLNP. 59

4.5 Predictions of ConvNPs and ALNPs trained with LML and LLNP, show-
ing interpolation and extrapolation within (grey background) and outside
(white background) the training range. Solid blue lines are samples,
dashed blue lines are means, and the shaded blue area is µ± 2σ. Purple
dash–dot lines are the ground-truth GP mean and µ ± 2σ. ConvNP
handles points outside the training range naturally, whereas this leads
to catastrophic failure for the ALNP. Note ALNP with LLNP tends to
collapse to deterministic samples, with all uncertainty explained with
the heteroskedastic noise. In contrast, models trained with LML show
diverse samples that account for much of the uncertainty. 61

xx List of figures

4.6 Left two plots: predictive samples on zero-shot multi MNIST. Right
two plots: samples and marginal predictives on standard MNIST. We
plot the density of the five marginals that maximize Sarle’s bimodality
coefficient Ellison (1987). We use LML for training. Blue pixels are not
in the context set. 63

4.7 Predictive samples overlaid on central Europe. Darker colours show
higher precipitation. In (e), coloured pixels represent context points. GP
samples often take negative values (lighter than ground truth data, see
Section B.8.2 for a discussion), whereas the LNP has learned to produce
non-negative samples which capture the sparsity of precipitation. The
model is trained on subregions roughly the size of the lengthscale of the
precipitation process. More samples in Section B.9. 64

4.8 Average regret plotted against number of points queried, averaged over
5000 tasks. 65

5.1 The ConvGNP model, introduced in this work, can recover intricate
predictive covariances. Columns show the posterior covariances produced
by a ConvGNP, after training with synthetic data drawn from a Gaussian
Process with a different covariance (exponentiated quadratic, Matern,
noisy mixture or weakly periodic), and conditioned on a randomly
sampled dataset. 69

5.2 Scaling of the runtime cost and memory footprint of a CNN as a function
of the convolution dimension. See text for discussion. Error bars have
been included for the runtime, but are too small to be seen in this plot. . 74

5.3 Samples drawn from the models’ predictive posteriors (green) compared
to the ground truth marginals (blue), using the kvv covariance. 75

5.4 Predictive log-likelihoods across datasets for the 1D Gaussian tasks. The
oracle GP performance is shown in dashed black. The dashed red line
marks the performance of the diagonal GP oracle, where the off-diagonal
covariance terms are 0. Error bars too small to be seen in the plots. . . 75

5.5 Predictive log-likelihood performance of the models, across datasets for
the 2D Gaussian experiments, where the FullConvGNP is not applicable.
Error bars too small to be seen in the plots. 75

List of figures xxi

5.6 The predator modelling task. Model fits (left) where black and red
crosses show the context and target sets of a dataset, the blue regions
show the marginals, and the green lines are samples from the predictive.
The dashed line marks y = 0. Predictive log likelihoods and threshold
estimator log likelihoods for the tested models (right). The dashed line
indicates random prediction. Error bars for per-datapoint predictive
log-likelihoods and threshold estimation task log-likelihoods too small to
be seen in the plots. 77

5.7 Illustration of the failure mode of mean-field models in the threshold
estimation task. The context and target are shown in black and red
crosses, and the black line shows the threshold for this context set. In
each plot, three samples from the predictive are shown in orange, green
and blue. 77

5.8 Fit of the ConvGNP (kvv) on the EEG data. Each pane shows one
of the three channels with unobserved targets (red crosses). All other
data (black crosses), including the remaining four channels are observed.
Marginals are shown in green, and two samples are shown in blue and
pink. 79

5.9 Locations of the training (top) and test (bottom) target locations for
Europe (VALUE), Europe (all) and Germany. 81

5.10 Illustration of sampled temperature fields. After training on low-res.
simulations (top left) and observed data (bottom left), the models are
conditioned on future low-res. simulations, to make predictions. The
remaining columns show the predicted mean and three samples from
the predictive. 81

6.1 A ConvCNP trained on random sawtooth functions and applied in
standard mode (left) and in our proposed autoregressive (AR) mode
(right). The black crosses denote observed data points, the blue lines
show model samples, and the bottom plots show the marginal predictive
distributions at the locations marked by the dashed vertical lines. In
standard mode, the CNP models each output with an independent
Gaussian (left). However, the same CNP, when run in AR mode, can
produce coherent samples and model multimodality (right). 86

xxii List of figures

6.2 Negative log-likelihoods on non-Gaussian sawtooth data. Deploying
the ConvCNP in AR mode dramatically improves performance, and
outperforms state-of-the-art NPs with Gaussian (FullConvGNP) and
non-Gaussian (ConvLNP) predictive distributions, at a fraction of the
training cost. 89

6.3 Top: generative process: mixture model of three deterministic functions
with additive Gaussian noise. Bottom: at the four target locations
indicated by dashed lines, the panes show the true distribution and
predictions by the ideal CNP and the ideal CNP applied autoregressively
at the targets from left to right. Notice that the first first AR predictive
distribution (left) is a Gaussian and the AR predictive distributions
improve as we take more AR samples (left to right). Details in Section D.5. 90

6.4 Comparison of noiseless (left) and noisy (right) samples from an AR
ConvCNP trained on data sampled from a GP with an exponentiated-
quadratic kernel, and the ground truth GP. The noiseless AR samples
were generated from the noisy AR samples using the procedure suggested
by Proposition 3. 92

6.5 Conceptual diagram showing the relationships between AR CNPs and
various neural distribution estimators. The vertical axis denotes whether
the model learns a distribution over a finite number of random variables,
a countably infinite number, or an uncountably infinite number. The
axis into the page denotes whether the architecture is MLP-based, or
uses attention or convolutions. From left to right, we show different
modelling paradigms. Fruitful exchanges occur when NPs (highlighted in
green) are introduced into other modelling paradigms. The proposed AR
CNPs can be viewed as introducing NPs to the AR modelling paradigm. 93

6.6 (a) Ground truth simulated cloud cover fraction on 25/06/2018. (b-
e), Sample draws from the AR ConvCNP, ConvCNP, ConvLNP and
ConvGNP with context points denoted by red dots. Context points
were removed from the right hand side of the 2D space to test the
models’ abilities to extrapolate coherent function samples far away
from observations. The ConvCNP and ConvLNP models used a beta-
categorical likelihood while the ConvGNP uses a low-rank Gaussian
likelihood. 100

List of figures xxiii

7.1 A visualization of the members of the neural process family considered
in this thesis. The vertical axis indicates whether the NP produces a
mean-field distribution or is able to model a Gaussian or non-Gaussian
predictive distribution. The horizontal axis indicates whether TE is
incorporated into the NP. The axis going into the page indicates whether
the NP models the latent variable distribution p(z |D(c)) using a point
estimate, a Gaussian distribution, or a variable-sized Gaussian via a
ConvDeepSet. Green nodes indicate models presented in this thesis. . . 106

A.1 Example functions learned by the (top) ConvCNP, (center) ACNP,
and (bottom) CNP when trained on an EQ kernel (with length scale
parameter 1). “True function” refers to the sample from the GP prior
from which the context and target sets were sub-sampled. “Ground
Truth GP” refers to the GP posterior distribution when using the exact
kernel and performing posterior inference based on the context set. The
left column shows the predictive posterior of the models when data is
presented in same range as training. The centre column shows the model
predicting outside the training data range when no data is observed
there. The right-most column shows the model predictive posteriors
when presented with data outside the training data range. 139

A.2 Example functions learned by the (top) ConvCNP, (center) ACNP,
and (bottom) CNP when trained on a Matérn-5/2 kernel (with length
scale parameter 0.25). “True function” refers to the sample from the GP
prior from which the context and target sets were sub-sampled. “Ground
Truth GP” refers to the GP posterior distribution when using the exact
kernel and performing posterior inference based on the context set. The
left column shows the predictive posterior of the models when data is
presented in same range as training. The centre column shows the model
predicting outside the training data range when no data is observed
there. The right-most column shows the model predictive posteriors
when presented with data outside the training data range. 140

xxiv List of figures

A.3 Example functions learned by the (top) ConvCNP, (center) ACNP,
and (bottom) CNP when trained on a random sawtooth sample. The
left column shows the predictive posterior of the models when data
is presented in the same range as training. The centre column shows
the model predicting outside the training data range when no data is
observed there. The right-most column shows the model predictive
posteriors when presented with data outside the training data range. . 141

A.4 Samples from our generated Zero Shot Multi MNIST (ZSMM) data set. 146
A.5 Log-likelihood and qualitative comparisons between ACNP and Con-

vCNP on four standard benchmarks. The top row shows the log-
likelihood distribution for both models. The images below correspond
to the context points (top), ConvCNP target predictions (middle), and
ACNP target predictions (bottom). Each column corresponds to a given
percentile of the ConvCNP distribution. ACNP could not be trained
on CelebA64 due to its memory inefficiency. 147

A.6 Qualitative evaluation of a ConvCNP (center) and ACNP (right)
trained on CelebA32 and tested on a downscaled version (146× 259) of
Ellen’s Oscar selfie (DeGeneres, 2014) with 20% of the pixels as context
(left). 148

A.7 First filter learned by ConvCNPXL, ConvCNP, and ConvCNP EQ
for all our datasets. In the case of RGB images, the plotted filters are
for the first channel (red). Note that not all filters are of the same size. 149

A.8 Log-likelihood and qualitative results on ZSMM. The top row shows the
log-likelihood distribution for both models. The images below correspond
to the context points (top), ConvCNP target predictions (middle), and
ConvCNPXL target predictions (bottom). Each column corresponds
to a given percentile of the ConvCNP distribution. 150

A.9 Effect of the receptive field size on ZSMM’s log-likelihood. The line
plot shows the mean and standard deviation over 6 runs. The blue
curve corresponds to a model with zero padding, while the orange one
corresponds to “circular” padding. 150

B.1 Samples from our generated Zero Shot Multi MNIST (ZSMM) data set. 158

List of figures xxv

B.2 Qualitative samples for one of the ConvLNP trained with LML in Ta-
ble 4.2. From top to bottom the four major rows correspond to MNIST,
ZSMM, SVHN, CelebA32 datasets. For each dataset and each of the
two major columns, a different image is randomly sampled; the first
sub-row shows the given context points (missing pixels are in blue for
MNIST and ZSMM but in black for SVHN and CelebA), while the next
three sub-rows show the mean of the posterior predictive corresponding
to different samples of the latent function. To show diverse samples
we select three samples that maximize the average Euclidean distance
between pixels of the samples. From left to right the first four sub-
columns correspond to a context set with 0%, 1%, 3%, 10% randomly
sampled context points. In the last two sub-columns, the context sets
respectively contain all the pixels in the left and top half of the image. 167

B.3 Qualitative samples between (a) ConvLNP trained with LML; (b) ANLP
trained with LML; (c) ANLP trained with LLNP. For each model the
figure shows the same as Figure B.2. 168

B.4 Log-likelihood and qualitative samples comparing ConvLNP and ALNP
trained with LML on (a) MNIST; (b) CelebA; (c) ZSMM; (d) SVHN.
For each sub-figure, the top row shows the log-likelihood distribution
for both models. The images below correspond to the context points
(top), followed by three samples form ConvLNP (mean of the posterior
predictive corresponding to different samples from the latent function),
and three samples from ALNP. Each column corresponds to a given
percentile of the ConvLNP test log likelihood (as shown by green arrows). 169

B.5 Training (blue) and test (red) regions in Europe, along with orography
data from ERA5Land. 170

B.6 Predictive density at two target points, where the ConvLNP significantly
outperforms the GP. The orange and blue circles show the likelihood of
the ground truth target value under the GP and ConvLNP. Note that as
the precipitation values are normalized to zero mean and unit standard
deviation, yt = −0.53 corresponds to no rain. In Figure B.6a, we see
the ConvLNP sometimes produces predictions heavily centered on this
value, showing it has learned the sparsity of precipitation values. In
Figure B.6b we see the ConvLNP predictive distribution is sometimes
asymmetric with a heavier positive tail, reflecting the non-negativity of
precipitation. 170

xxvi List of figures

B.7 Samples from the predictive processes overlaid on central Europe, for a
model trained on random 28× 28 subregions of the full 61× 201 central
Europe region. Note some blocky artefacts in the ConvNP samples
due to training on small subregions. Here the GP has overfit to the
orography data, with samples that resemble the orography rather than
precipitation. 171

B.8 Samples from the predictive processes overlaid on central Europe, for a
model trained on random 28× 28 subregions of the full 61× 201 central
Europe region. Here the GP has learned a lengthscale that is too large. 171

B.9 Samples from the predictive processes overlaid on central Europe, for a
model trained on random 40× 40 subregions of the full 61× 201 central
Europe region. Here the GP has overfit to the orography data, with
samples that resemble the orography rather than precipitation. 171

B.10 Samples from the predictive processes overlaid on central Europe, for a
model trained on random 40× 40 subregions of the full 61× 201 central
Europe region. The GP has again overfit to the orography data. 171

B.11 Samples from the predictive processes overlaid on central Europe, for a
model trained on random 40× 40 subregions of the full 61× 201 central
Europe region. 172

C.1 As for Figure 9, but for 12/01/2003. 185
C.2 As for Figure 9, but for 24/02/2003. 185
C.3 As for Figure 9, but for 06/03/2004. 186
C.4 As for Figure 9, but for 23/01/2006. 186
C.5 As for Figure 9, but for 04/04/2007. 186

List of figures xxvii

D.1 Illustration of the AR procedure with a random AR ordering and the
de-noising step (Procedure 6.2.1 and Proposition 3), to produce smooth
samples. Given a context set (black crosses), we can use the CNP to
get marginal predictions at arbitrary input locations (first figure). We
choose a randomly sampled input location, draw a corresponding output
sample from the model’s predictive (blue dot in the second plot), append
this to the context set, and pass the augmented context set through the
model again. We repeat this step a number of times (third and fourth
figures), until all function (epistemic) uncertainty has been removed and
all that remains is irreducible noise (aleatoric) uncertainty (fifth figure).
This procedure yields noisy function samples (blue dots in the sixth plot),
which we pass one last time through the model to obtained a denoised
sample, treating the mean prediction as an approximate noiseless sample
(seventh figure). Repeating this procedure yields high-quality samples
from the model predictive (eighth figure). 190

D.2 Samples and predictions for an AR ConvCNP with various numbers
of target points ordered randomly (left column) and ordered left to
right (right column). When the density of the target points does not
exceed the training data (50 and 100 points), ordering the target points
randomly or left to right does not matter. When the density of the target
points comes close to the training data or exceeds it (200, 500, and 1000
points), bias creeps into the predictions. The random ordering appears
to perform more robustly than left to right. The data is sampled from
the EQ data process from the synthetic experiments (Section 6.4.1), and
the trained model is also taken from the synthetic experiments. The
predictions by the model are shown in solid blue and the marginals by
the ground-truth EQ process are shown in dot-dashed purple. 205

D.3 Plot of the standard deviation, due to different random orderings, of the
per datapoint predictive log-likelihood (in nats) of an AR ConvCNP on
one-dimensional sawtooth data, as a function of the number of target
set size. For each point in the plot, we have used 210 randomly sampled
and fixed tasks, on each of which we apply the AR ConvCNP with 100
different randomly sampled orderings. 206

D.4 Samples from the sawtooth data process 206
D.5 Multi-modality of predictions by the AR ConvCNP 207
D.6 Hare–lynx data set and proposed stochastic simulator 221

xxviii List of figures

D.7 Example of trial in the EEG data set 224
D.8 Empirical density of ERA5 cloud cover fraction computed over the

period 2000-2013. 226
D.9 Seven samples from each model in the Antarctic cloud cover sample

extrapolation task for 25/06/2018. 230
D.10 Locations of the 589 weather stations around Germany in the downscal-

ing experiments. 233
D.11 Multiscale architecture for the AR ConvCNP 241

List of tables

3.1 Log-likelihood from synthetic 1-dimensional experiments. 36
3.2 Mean and standard errors of log-likelihood and root mean squared error

over 1000 test objects from the PLastiCC dataset. 38
3.3 Log-likelihood from image experiments (6 runs). 40

4.1 Log-likelihoods on 1D regression tasks. Lower bounds marked with
asterisk. Highest non-GP values in bold. 62

4.2 Test log-likelihood lower bounds for image completion (5 runs). 63
4.3 Joint predictive log-likelihoods (LL) and RMSEs on ERA5-Land, aver-

aged over 1000 tasks. 64

5.1 Computational and memory costs for one-dimensional models, during a
forward using a batch size of one, that is, a single task was passed to
each model. 73

5.2 Per-datapoint log-likelihood on the held-out EEG test set. 79
5.3 Predictive log-likelihood and MAE for the three temperature prediction

experiments. 82

6.1 Comparison of various classes of neural processes 87
6.2 Performance of NPs training on the GP EQ task, sawtooth task, and

mixture task. Diagonal GP denotes the exact GP predictive, but with
correlations removed. Trivial denotes a model that predicts a Gaussian
distribution with the empirical means and standard deviation of the
context outputs. Significantly best models in bold. Note that the
FullConvGNP cannot be run on tasks where dx > 1. 97

6.3 Normalised log-likelihoods in the predator–prey experiments, showing
interpolation (int.), forecasting (for.), and reconstruction (rec.) on
simulated (S) and real (R) data. Significantly best results in bold. . . 97

xxx List of tables

6.4 Per-datapoint predictive log-likelihoods on the EEG experiments. Sig-
nificantly best results in bold. 98

6.5 Log-likelihoods (log-lik.) and mean absolute errors (MAE, in units
of cloud cover %), over the 2019-2019 test period for the cloud cover
task. Note that log-likelihoods cannot be compared directly across the
Gaussian and beta-categorical models. Errors indicate standard errors.
Significantly best results in bold. 100

6.6 Log-likelihoods and mean absolute errors (MAEs) in the downscaling
experiments, without (left) and with (right) assisting weather station
observations. Significantly best results in bold. ∗Cannot use extra
weather station observations. 101

A.1 Values used to normalise the data in the PLAsTiCC experiments. . . . 142
A.2 CNN architecture for the image experiments. 145
A.3 Log-likelihood from image ablation experiments (6 runs). 147

B.1 Parameter counts for the ConvCNP, ConvLNP, ALNP, and LNP in the
1D regression tasks . 157

B.2 Log-likelihood for ConvCNP, ConvLNP, ALNP, and NP. Each of the
stochastic models was trained on each data set with LML and LNP,
separately. 159

B.3 Coordinates for boxes defining the train and test regions. Latitidues are
given as (north, south), and longitudes as (west, east). 163

D.1 Summary of results for the Gaussian synthetic experiments 208
D.2 Summary of results for the non-Gaussian synthetic experiments 209
D.3 Results for the EQ synthetic experiments with 1D inputs 210
D.4 Results for the EQ synthetic experiments with 2D inputs 211
D.5 Results for the Matérn–5

2 synthetic experiments with 1D inputs 212
D.6 Results for the Matérn–5

2 synthetic experiments with 2D inputs 213
D.7 Results for the weakly periodic synthetic experiments with 1D inputs . 214
D.8 Results for the weakly periodic synthetic experiments with 2D inputs . 215
D.9 Results for the sawtooth synthetic experiments with 1D inputs 216
D.10 Results for the sawtooth synthetic experiments with 2D inputs 217
D.11 Results for the mixture synthetic experiments with 1D inputs 218
D.12 Results for the mixture synthetic experiments with 2D inputs 219
D.13 Parameters of the stochastic Lotka–Volterra equations 222
D.14 Results for the predator–prey experiments 223

List of tables xxxi

D.15 ERA-Interim reanalysis predictors. 232
D.16 Using autoregressive sampling for marginal approximation improves held-

out log-likelihoods on all experiments. Values are normalized by the
number of target points. Values which are significantly best (p < 0.05)
are shown in bold. 239

D.17 Log likelihood values for varying context sizes using ConvCNP and
ConvCNP (AuxAR) using the function mixture data generator. Column
headers indicate the context set size. Log-likelihoods are shown in bold
when they are significantly best (p < 0.05). Column headers are context
sizes. Errors indicate central 95% confidence interval. 239

D.18 Log likelihood values for varying context sizes using ConvCNP and
ConvCNP (AuxAR) using the sawtooth data generator. Column headers
indicate the context set size.. Log-likelihoods are shown in bold when
they are significantly best (p < 0.05). Column headers are context sizes.
Errors indicate central 95% confidence interval. 240

D.19 Log likelihood values for varying context sizes using ConvCNP and
ConvCNP (AuxAR) using the function mixture data generator. Column
headers indicate the context set size. Log-likelihoods are shown in bold
when they are significantly best (p < 0.05). Column headers are context
sizes. Errors indicate central 95% confidence interval. 240

Chapter 1

Introduction

In this chapter, I outline the main motivations for the work presented in this thesis
as well as the main contributions contained within. A list of publications that I have
co-authored during my PhD studies is presented.

1.1 Motivation

Recently, meta-learning, often called learning to learn, has emerged as a machine
learning approach to simultaneously learn a model and a learning algorithm (Hospedales
et al., 2021; Schmidhuber, 1987) for a collection of related tasks. A fundamental goal of
machine learning is to automate decision making and meta-learning can be viewed as
the next logical step toward this goal. Meta-learning is also better aligned with human
and animal learning where it is observed that learning strategies improve on both
lifetime and evolutionary timescales (Biggs, 1985; Harlow, 1949; Hospedales et al., 2021;
Schrier, 1984). Neural processes (Garnelo et al., 2018a,b) are a family of meta-learning
models which combine the flexibility of deep learning with the uncertainty awareness of
probabilistic models. Rather than modelling a particular function between inputs and
outputs, the usual paradigm of supervised learning, neural process model the learning
the of a map between training sets and functions (or predictive distributions). In doing
so, neural processes alleviate the need for the user to define a prior distribution based
on the user’s previous knowledge about the function. Instead, neural processes aim
to learn properties common to all related tasks via meta-training. This makes neural
processes suitable for applications where individual training sets are small.

Physical applications like climate modelling have off-the-grid data. Datasets in
medical applications are messy. Both types of datasets are often incomplete due to
issues with collection, data corruption, or privacy restrictions requiring modelling

2 Introduction

methods that are robust to missing or corrupted data. The flexible data-handling
capabilities of neural processes (NPs; Garnelo et al. (2018a,b)) make them a promising
candidate for application to these and other real-world problems. Due to similar issues,
many real-world datasets are small and require data-efficient training techniques such
meta-learning or sim-to-real pre-training, again easily handled by NPs.

However, many real-world machine learning applications have a set of requirements
that are not met by neural processes. First, ideal solutions to prediction problems
with spatio-temporal input variables should be translation equivariant: if the data are
translated in time or space, then the predictions should be translated correspondingly
(Cohen and Welling, 2016; Kondor and Trivedi, 2018). Although part of the motivation
for neural processes is to avoid having to specify model priors, in this case it is useful
to be able to incorporate the fundamental inductive bias of translation equivalence
into our models as we can do with convolutional neural networks (Cohen and Welling,
2016; LeCun et al., 1998). Initially for conditional neural processes (CNPs; Garnelo
et al. (2018a)) translation equivarience had to be learned directly from data requiring
large amounts of training data making training inefficient.

Second, the data distributions for real-world applications require non-Gaussian,
multi-modal predictive distributions with complex output dependencies across variables.
To accurately answer questions such as “What’s the probability of enough rain falling
across a river basin to lead to a flood?” or “What’s the chance of having a week of
high temperatures in a particular city?”, we require the whole joint distribution over
several locations and not just marginal predictions. Many medical science applications,
such as patient simulation or treatment schedule modelling, require frameworks for
reasoning under uncertainty and a framework for downstream estimation. Standard
CNPs are unable to model dependencies across output dimensions. This is due to
the modelling assumption that dimensions of the output distribution are independent
given the neural network parameters. This assumption results in incoherent samples.
As a consequence, the predictions are poorly suited for downstream estimation and
real-world applications, such as those in climate science, that require well-calibrated
joint uncertainties (Markou et al., 2022). The latent neural process (LNP; Garnelo
et al. (2018b)) attempts to address this issue through the use of a latent variable
in the model. Unfortunately, this results in a difficult training procedure requiring
approximate inference (Foong et al., 2020).

The majority of the work in this thesis is toward developing members of the neural
processes family of models that overcome the above challenges, with the goal of applying
them to real-world applications. We aim to achieve this by incorporating translation

1.2 Overview and Main Contributions 3

equivariance into neural processes, by making them easier to train, and by making them
able to produce more rich and flexible predictive distributions. In the next section, we
outline the contributions made in this thesis toward this goal.

1.2 Overview and Main Contributions

This section provides an overview of the contributions this thesis puts forward.

Convolutional Conditional Neural Processes. Chapter 3 introduces the con-
volutional conditional neural process (ConvCNP), a member of the neural process
family that models translation-equivariant maps from training sets to predictive distri-
butions. Translation equivariance is an important inductive bias for many learning
problems including time series modelling, spatial data, and images. As a requirement
for translation-equivariance, the model embeds data sets into an infinite-dimensional
function space as opposed to a finite-dimensional vector space. We extend the theory
of neural representations of sets Zaheer et al. (2017a) to functional representations;
we introduce the architecture of a convolutional deep set; and we demonstrate that
any translation-equivariant embedding can be represented using this construction. We
demonstrtate that convolutional neural networks achieve what was state-of-the-art
performance at the time of publication compared to contemporary neural processes
on synthetic experiments, the PLAsTiCC data set (Allam Jr et al., 2018), a sim2real
predator-prey setting, and two-dimensional image completion experiments.

The content in this chapter is based on the publication ‘Convolutional Conditional
Neural Processes’ presented in the International Conference on Learning Represen-
tations, 2020 Gordon et al. (2020). The research was a was a collaborative effort
conducted with the lead authors Jonathan Gordan, and Wessel P. Bruinsma, collabora-
tors Andrew Y. K. Foong, myself, and Yann Dubois as well as our advisor Richard E.
Turner. All of of the work in the paper was a collaborative effort by our entire team.

Convolutional Latent Neural Processes. In chapter 4 we propose the Convolutional
Latent Neural Process, which builds off of the previous chapter endowing latent
neural processes with translation equivariance. The ConvLNP uses ConvCNPs as
part of its architecture and extends ConvCNPs to allow for dependencies in the
predictive distribution. This property enables ConvNPs to be deployed in settings
which require coherent samples, such as Thompson sampling or conditional image
completion. Moreover, we propose a new maximum-likelihood objective to replace

4 Introduction

the standard ELBO objective in latent neural processes, which conceptually simplifies
the framework and empirically improves performance. We demonstrate the strong
performance and generalization capabilities of ConvLNPs on 1D regression, image
completion, and various tasks with real-world spatio-temporal data.

The content in this chapter is based on the publication ‘Meta-Learning Stationary
Stochastic Process Prediction with Convolutional Neural Processes’ presented in the
Conference on Neural Information Processing Systems, 2020 Foong et al. (2020). The
research was conducted with the lead authors Andrew Y. K. Foong, Wessel P. Bruinsma,
and Jonathan Gordon, collaborators Yann Dubois and myself, as well as our advisor
Richard E. Turner. All of of the work in the paper was a collaborative effort by our
entire team.

Gaussian Neural Processes. In chapter 5 we introduce the Gaussian neural process
(GNP). GNPs directly parameterize a Gaussian predictive distribution via mean and
covariance functions defined by neural process functions. The GNP is able to model
joint output dependencies, like latent neural processes (Garnelo et al., 2018b). However,
latent neural processes require approximate inference for training due to their latent
variable. GNPs take advantage of the much more simple training procedure of the
CNPs. We also extend GNPs by using invertible output transformations to capture
non-Gaussian output distributions. We show that GNPs can be used in downstream
estimation tasks which require dependent function samples and that, by accounting for
output dependencies, GNPs achieve improved predictive performance on synthetic and
real data. In particular, we demonstrate that GNPs outperform their CNP and LNP
counterparts on real-world electroencephalogram (EEG) data. We also show that GNPs
outperform a standard ensemble of widely used methods in a statistical downscaling, a
climate modelling application, while providing spatially coherent temperature samples
which are necessary for climate impact studies.

The content in this chapter is based on the publication ‘Practical Conditional
Neural Processes Via Tractable Dependent Predictions’ presented in the International
Conference on Learning Representations, 2022 Markou et al. (2021). The research
was conducted with my co-lead author Stratis Markou and collaborators Wessel P.
Bruinsma, and Anna Vaughan as well as our advisor Richard E. Turner. All of of the
work in the paper was a collaborative effort by our entire team.

Autoregressive Neural Processes. In chapter 6, we again focus on developing
a neural processes method for modelling rich predictive distributions. Instead of

1.3 List of Publications 5

designing a new architecture to do so, we propose changing how CNPs are deployed
at test time, without any modifications to the model or training procedure. Using a
standard CNP, instead of making predictions independently for every target point, we
autoregressively define a joint predictive distribution using the chain rule of probability,
taking inspiration from the neural autoregressive density estimator (NADE) literature
Uria et al. (2016). We show that this simple procedure allows factorised Gaussian CNPs
to model highly dependent, non-Gaussian predictive distributions. In an extensive
range of tasks with synthetic and real data, we show that CNPs in autoregressive (AR)
mode not only significantly outperform non-AR CNPs, but are also competitive with
more sophisticated models that are significantly more expensive and challenging to
train. This performance is perhaps surprising since AR CNPs are not explicitly trained
to model joint dependencies. To handle the high-resolution data in a computationally
tractable manner, we introduce a multi-scale architecture for ConvCNPs. We also
combine AR ConvCNPs with a beta-categorical mixture likelihood, producing strong
results compared to other neural processes. Viewing the AR NP as a type of neural
density estimator (Uria et al., 2016), we highlight their connections to a range of
existing methods in the deep generative modelling literature.

The content in this chapter is based on the submission ‘Autoregressive Conditional
Neural Processes’ under review for the International Conference on Learning Represen-
tations, 2023. The research was conducted with my co-lead authors Stratis Markou
and Wessel P. Bruinsma, and collaborators Andrew Y. K. Foong, Anna Vaughan, Tom
Andersson, and Anthony Buonomo as well as our advisors Scott Hosking and Richard
E. Turner. All of the work in the paper was a collaborative effort by our entire team.

1.3 List of Publications

The following is a list of publications that I have co-authored during my PhD. Titles
in bold indicate material contained in this thesis.

Peer-reviewed Conference Proceedings.

José Miguel Hernández-Lobato*, James Requeima*, Edward O. Pyzer-Knapp, Alán
Aspuru-Guzik. ‘Parallel and distributed Thompson sampling for large-scale

* indicates equal contribution.

6 Introduction

accelerated exploration of chemical space.’ In: International Conference on Machine
Learning, 2017.

James Requeima*, Will Tebbutt*, Wessel Bruinsma*, Richard E. Turner. ‘The
Gaussian Process Autoregressive Regression Model (GPAR).’ In: International
Conference on Artificial Intelligence and Statistics, 2019.

James Requeima*, Jonathan Gordon*, John Bronskill*, Sebastian Nowozin, Richard E.
Turner. ‘Fast and Flexible Multi-Task Classification Using Conditional Neural
Adaptive Processes.’ In: Conference on Neural Information Processing Systems,
spotlight paper, 2019.

Jonathan Gordon*, Wessel Bruinsma*, Andrew Y. K. Foong, James Requeima, Yann
Dubois, Richard E. Turner. ‘Convolutional Conditional Neural Processes.’ In:
International Conference on Learning Representations, 2020.

John Bronskill*, Jonathan Gordon*, James Requeima, Sebastian Nowozin, Richard E.
Turner. ‘TaskNorm: Rethinking Batch Normalization for Meta-Learning
Meta-Learning.’ In: International Conference on Learning Representations, 2020.

Andrew Y. K. Foong*, Wessel Bruinsma*, Jonathan Gordon*, Yann Dubois, James
Requeima, Richard E. Turner ‘Meta-Learning Stationary Stochastic Process
Prediction with Convolutional Neural Processes.’ In: Neural Information
Processing Systems, 2020.

Stratis Markou*, James Requeima*, Wessel Bruinsma, Anna Vaughan, Richard E.
Turner. ‘Practical Conditional Neural Processes Via Tractable Dependent
Predictions.’ In: International Conference on Learning Representations, 2022.

Wessel P. Bruinsma*, Stratis Markou*, James Requeima*, Andrew Y. K. Foong, Anna
Vaughan, Tom Andersson, Anthony Buonomo, Scott Hosking, Richard E. Turner.
‘Autoregressive Conditional Neural Processes.’ In: International Conference on
Learning Representations, 2023

1.3 List of Publications 7

Peer-reviewed Workshop Proceedings

Daniel Flam-Shepherd, James Requeima, David Duvenaud. ‘Mapping Gaussian
Process Priors to Bayesian Neural Networks.’ In: NeurIPS Bayesian Deep Learning
Workshop, 2017.

Daniel Flam-Shepherd, James Requeima, David Duvenaud. ‘Characterizing and
Warping the Function space of Bayesian Neural Networks.’ In: NeurIPS Bayesian
Deep Learning Workshop, 2018.

Wessel Bruinsma, James Requeima, Andrew Y. K. Foong, Jonathan Gordon, Richard
E. Turner. ‘The Gaussian Neural Process.’ In: Advances in Approximate Bayesian
Inference Symposium, 2020.

Stratis Markou*, James Requeima*, Wessel Bruinsma, Richard E. Turner. ‘Efficient
Gaussian Neural Processes for Regression.’ In: ICML Uncertainty and Robustness in
Deep Learning Workshop, 2021.

Ambrish Rawat, James Requeima, Wessel Bruinsma, Richard Turner. ‘Challenges and
Pitfalls of Bayesian Unlearning.’ In: ICML Updatable Machine Learning Workshop,
2022

Tom R. Andersson, Wessel Bruinsma, Stratis Markou, Daniel C. Jones, J. Scott
Hosking, James Requeima, Alejandro Coca-Castro, Anna Vaughan, Anna-Louise Ellis,
Matthew Lazzara, Richard E. Turner. ‘ Active Learning with Convolutional Gaussian
Neural Processes for Environmental Sensor Placement.’ In: Workshop on Gaussian
Processes, Spatiotemporal Modeling, and Decision-making Systems, NeurIPS 2022.

Chapter 2

Background

This chapter provides an introduction the main topics considered in this thesis. We
begin by discussing meta-learning and stochastic processes, two motivating topics for
neural processes. We then look at neural processes themselves and various members of
the neural process family of models. These models will be the starting-off point for the
work developed in this thesis and points of comparison for our experimentation.

2.1 Meta-Learning and Stochastic Processes

Most contemporary machine learning approaches train a model from scratch for a
particular task using features and a learning algorithm designed by hand. This
approach has worked very well especially with the advent of deep learning and in the
presence of very large datasets (Goodfellow et al., 2016). However, one goal of machine
learning is to automate decision making – to make decisions learning directly from data.
Early success in machine learning utilized hand-engineered features (Domingos, 2012;
Hospedales et al., 2021; Lowe, 2004). Deep neural networks are flexible approximating
functions and part of the success of deep learning can be attributed to their ability to
learn features and models directly from data (Krizhevsky et al., 2012). Meta-learning,
often called learning to learn, can be viewed as the next logical step toward automating
descision making: simultaneously learning the features, the model, and the learning
algorithm directly from data (Hospedales et al., 2021).

Conventional ML improves model predictions over multiple data instances. Meta-
learning improves a learning algorithm over multiple learning episodes, tasks, or
datasets. If we have many related tasks that share some common structure, meta-
learning attempts to gain information about the shared structure by training over
multiple episodes. The training of meta-learning models is often framed as taking

10 Background

place in two stages: the so-called inner loop or base learning and the outer loop or
meta-training (Hospedales et al., 2021). During the inner-loop, the algorithm learns
to solve a task such solving a specific regression task (Krizhevsky et al., 2012) via
optimizing a supervised regression loss. During the outer loop, the algorithm updates
the inner learning algorithm in order to improve an outer objective. This improvement
should lead to an inner learning algorithm that has better performance according to
some metric such as generalization or speed of learning. Most current meta-learning
algorithms define these two objectives as a meta-level objective that is end-to-end
optimized.

This meta-learning framework can lead to models which perform better than those
trained from scratch (Finn et al., 2017; Garnelo et al., 2018a; Requeima et al., 2019)
and is better aligned with human and animal learning where it has been observed
that learning strategies improve on both lifetime and evolutionary timescales (Biggs,
1985; Harlow, 1949; Schrier, 1984). Take few-shot learning (Lake et al., 2015) for
image classification for example: the task of performing image classification after seeing
a handful of training examples. Meta-learning approaches to few-shot learning like
the one used by Requeima et al. (2019) learn a common set of features and learning
algorithm to quickly adapt these features to a particular new task after training on
repeated episodes. Anecdotally, I’ve noticed that my young twin toddlers now need very
few examples to identify and classify objects – they have honed the learning algorithms
required to perform this task after very few training examples having performed similar
tasks many times before.

Meta-learning is related to transfer-learning (Zhuang et al., 2020), where knowledge
gained in one domain is transferred to another for improved performance on the latter,
and multi-task learning (Perez et al., 2018; Rebuffi et al., 2017, 2018), where a model
is asked to perform well on multiple tasks. Meta-learning is a framework that can be
used to attack either of these problem settings (Requeima et al., 2019). Meta-learning
has seen success in few-shot image classification (Finn et al., 2017; Ravi and Larochelle,
2017; Requeima et al., 2019; Snell et al., 2017), hyperparameter optimization Franceschi
et al. (2018), unsuperviserd learning (Metz et al., 2018), reinforcement learning (Alet
et al., 2020) and neural architecture search (Liu et al., 2018a). In this thesis we focus on
continuing the success of contemporary meta-learning methods but, in particular, with
the goal of applying them to real-world problems such as climate modelling, population
modelling, and medical science applications (see Sections 3.5, 4.5, 5.5 and 6.4).

2.1 Meta-Learning and Stochastic Processes 11

2.1.1 Meta-Learning Problem Statement

Let X be a compact input space and let Y be the output space. Let DN = (X × Y)N

be the collection of all sets of N input–output pairs, and let D = ⋃∞
N=0DN . We call

elements D ∈ D data sets and denote D = (x,y) where x ∈ XN , y ∈ YN are the
inputs and outputs respectively. In meta-learning we are given a collection of data
sets (Dm)Mm=1, called a meta–data set, with the individual data sets Dm called tasks
(Vinyals et al., 2016). Every task Dm is split up Dm = D(c)

m ∪D(t)
m into a context set

D(c)
m = (x(c)

m ,y
(c)
m) and a target set D(t)

m = (x(t)
m ,y

(t)
m). Here x(c)

m are called the context
inputs, y(c)

m the context outputs, x(t)
m the target inputs, and y(t)

m the target outputs. Our
goal is to devise an algorithm which takes in a context set D(c)

m and produces the best
possible prediction for the target outputs y(t)

m given target inputs x(t)
m .

In most real-world examples where we do not have access infinitely many tasks, we
subsample our finite dataset D to form context-target pairs. For each iteration m of
our training procedure, we sample a context set D(c)

m and target set D(t)
m from D and

perform the procedure in Algorithm 1.

Algorithm 1 Meta-Training using Stochastic Gradient Descent and Finite Data.
Require: Finite Data D, parameters θ, Loss function L(θ,D(c), D(t)), Learning rate α

1: while not converged do
2: sample D(c), D(t) from D
3: L ← L(θ,D(c), D(t))
4: θ ← α∇θL
5: end while
6: return Model parameters θ

2.1.2 Stochastic Processes

For our purposes, a stochastic process (SP) on X will be defined1 as a probability
measure on the set of functions from X → Y, i.e. YX , equipped with the product
σ-algebra of the Borel σ-algebra over each index point (Tao, 2011), denoted Σ. The
measurable sets of Σ are those which can be specified by the values of the function
at a countable subset I ⊂ X of its input locations. We model the world as having a
ground truth stochastic process P ∈ P(X) but in practice we only ever observe data
at a finite number of points. We denote the set of all measures on X as P(X).

1Strictly speaking, this is non-standard terminology, since P is the law of a stochastic process. See
Ross et al. (1996) or Tao (2011) for a more thorough introduction to stochastic processes.

12 Background

The approach we will take in this thesis to define a stochastic process is via
its finite-dimensional marginal distributions (Garnelo et al., 2018b); we view the
process as a random function F : X → Y and for each finite sequence of inputs
x1:n = (x1, . . . , xn) we define the marginal distribution over the output function
values y1:n = (F (x1), . . . , F (xn)). Inspired by Gaussian processes (Rasmussen and
Williams, 2006), this is a natural approach; a GP defines all marginal joint distributions
as multivariate Gaussians via its mean and covariance functions. The Kolmogorov
extension theorem gives us a way of ensuring that our collection of marginal distributions
form a stochastic process since, in general, it is not guaranteed.

Theorem 1 (Kolmogorov Extension Theorem (Oksendal, 2013)). Let X be an input
space and let Y be an output space. Let {p} be a collection of densities such that for
all n ∈ N, for each finite sequence of distinct variables x1:n = (x1, . . . , xn) from X there
is a unique density px1,...,xn(y1, . . . , yn) in this collection. If {p} satisfies

1. Exchangeability: For each n ∈ N, if π is a permutation of 1, . . . , n, then:

px1,...,xn(y1, . . . , yn) = pxπ(1),...,xπ(n)(yπ(1), . . . , yπ(n)) (2.1)

2. Consistency: If 1 ≤ m ≤ n then

px1,...,xm(y1, . . . , ym) =
∫
px1,...,xn(y1, . . . , yn) dym+1 . . . dyn (2.2)

then there exists a unique measure on (YX ,Σ) that has these densities as its finite-
dimensional distributions. If {p} satisfies the above two conditions then we call it
Kolmogorov-consistent.

In this thesis, we will model the world as having a ground truth stochastic process
P ∈ P(X).

Consider a Kolmogorov-consistent (i.e. consistent under marginalization) collection
of distributions on finite index sets I ⊂ X . By the Kolmogorov extension theorem, there
exists a unique measure on (RX ,Σ) that has these distributions as its finite marginals.
Hence we may think of these stochastic processes as defined by their finite-dimensional
marginals.

2.1 Meta-Learning and Stochastic Processes 13

2.1.3 Prediction Map Formulation

Consider rainfall y as a function of position x. To model rainfall, we can view it
as a random function from X to Y. Mathematically, this corresponds to a SP on
X—a probability distribution over functions from X to Y—which we denote by P .
Given perfect knowledge of P , we could predict rainfall at any location of interest by
conditioning P on observations Dc, yielding a predictive SP. However, in practice we
will only have access to a large collection of sample functions from P . Each function is
known only at a finite set of inputs, D = (xk,yk)Kk=1, which we divide into D(c), D(t)

for meta-training. Given sufficient data, we can meta-learn the map from context sets
D(c) to the ground-truth predictive distribution: D(c) 7→ p(y(t)|x(t), D(c)).

Formally, Let p(y|x) denote the density with respect to Lebesgue measure of the
finite marginal of the stochastic process P with index set x. Assume we have observed
P at a finite number of points (x(c),y(c)), with p(y(c)|x(c)) > 0. Let x(t) be another
finite index set. Then we define the finite marginal at x(t) conditioned on D(c) as the
distribution with density

p(y(t) |x(t), D(c)) = p(y(t),y(c)|x(t),x(c))
p(y(c) |x(c)) . (2.3)

It can easily be verified that for a fixed D(c), the conditional marginal distributions
for different x(t) in Equation (2.3) are Kolmogorov-consistent. Again, the Kolmogorov
extension theorem implies there is a unique measure PD(c) on (YX ,Σ) that has Equa-
tion (2.3) as its finite marginals. We now define the prediction map, so called because it
maps each observed dataset D(c) to the exact predictive stochastic process conditioned
on D(c). The meta-learning task may be viewed as learning an approximation to the
prediction map.

Definition 1 (Prediction map). A prediction map π is a map from sets to SPs,
πP : S → P(X), πP (D(c)) = PD(c) .

2.1.4 Gaussian Processes

Gaussian Processes (GPs) (Rasmussen and Williams, 2006) are a nonparametric model
from which neural processes, the model we examine in the next section, take inspiration.
GPs define a stochastic process on Y via a mean function µ : X → Y , a covariance (or

14 Background

kernel) function k : X × X → R, and a likelihood function p : Y → R+. Together, for
any index locations x(t), they parametrize:

p(y |x) =
∫
N (f |µ(x), k(x,x)) p(y | f,x) df (2.4)

where k(x,x) is the covariance matrix generated by evaluating k(xi, xj) for every pair
xi, xj in x.

It can be shown using Bayes rule on equation 2.4 that, if the likelihood function
is also a Gaussian, the output of the GP prediction map is also a GP (Rasmussen
and Williams, 2006). For a GP with zero mean function we get the prediction map
πGP mapping to the GP posterior p(f |x(t),x(c),y(c)) with mean function µpost and
covariance functions kpost:

µpost(x(t)) = k(x(t),x(c))k(x(c),x(c))−1y(c) (2.5)
kpost(x(t),x(t)) = k(x(t),x(t))− k(x(t),x(c))k(x(c),x(c))−1k(x(c),x(t)) (2.6)

Computing the posterior in classical GPs is expensive, scaling with O ((M +N)3)
where M and N are the number of observations and targets. Another downside to
GPs is that they require the user to explicitly specify prior information about the
problem via the kernel and mean functions which, if done poorly, will induce the wrong
inductive bias.

2.2 Neural Processes

In this section we examine various members of the neural process family of meta-
learning models. Neural Processes (NPs) are an attractive family of models producing
well-calibrated2 marginal predictions and enable fast inference at test time. At their
core, CNPs use an encoder/decoder architecture, similar to a Variational Autoencoder
(Kingma and Welling, 2014) and are meta-trained to map context sets to conditional
predictive distribution. Two key properties of NPs are that they use a neural network
architecture to:

1. define a valid stochastic process and to
2In this thesis, calibration refers to the statistical consistency between distributional forecasts and

observations from the true generative distribution (which is assumed to exist). This calibration will
generally be measured using the strictly proper scoring function log p which is maximized when the
distributional forecaster is equal to the generative distribution (Gneiting and Raftery, 2007).

2.2 Neural Processes 15

2. take data sets as inputs and return a prediction at any desired input location.

NPs take inspiration from De Finetti’s Theorem for the former and rely on the DeepSets
neural network architecture for the latter.

2.2.1 Defining a Stochastic Process

De Finetti’s theorem (De Finetti, 1937) states that every exchangeable process is a
mixture of i.i.d. processes:

p(y1, . . . , yn) =
∫
p(z)

n∏
i=1

p(yi | z) dz (2.7)

Where z is a global latent variable conditioned on which the variables yi are i.i.d..
This formulation gives us a way to construct a stochastic process and highlights a
connection between exchangeability and Bayesian statistics: we simply need to define
a prior p(z) and a collection of likelihoods pxi

(yi | z) for all xi ∈ X . As discussed
above, this construction defines all finite marginals and its conditional independence
assumption ensures that both the prior and posterior predictive distribution are
Kolmogorov-consistent. By computing the posterior p(z |D(c)), we get the prediction
map

π(D(c))(y1, . . . , yn) = p(y1, . . . , yn |D(c)) (2.8)

=
∫
p(z |D(c))

n∏
i=1

p(yi | z) dz (2.9)

However, for our meta-learning problem set-up, it is not strictly necessary to define
prior predictive since we are looking for an approximation to the prediction map.
Instead, neural processes define the collection of finite marginals pθ(yi | z) and the
posterior pθ(z |Dc) functions directly using neural networks. Below, we look at the
architecture neural processes use to define the component pθ(z |D(c)).

2.2.2 Deep Sets

In order to define the component pθ(z |D(c)) we need to define an architecture capable
of taking arbitrary sized sets as input and to be permutation invariant on sets. We say
that f is a valid function on sets if it satisfies the following:

Property 1 (Sn-invariant and S-invariant functions). Let X be an input space and let
X ∗ be the Kleene closure of X – the set of all finite sequences of elements of X . Let

16 Background

f : X ∗ → Y be a function that takes arbitrary sized finite sequences of elements of X
as inputs. If

f(Xn) = f(πXn) for n ∈ N, and all π ∈ Sn, Xn ∈ X (2.10)

where Sn is the set of permutations on n elements for n ∈ N , then we say that f
is Sn-invariant. We say that f is an S-invariant function if f |X ∗

n
, the restriction of

f to datasets Xn, is Sn-invariant for all n ∈ N. We will equivalently call S-invariant
functions permutation invariant.

Zaheer et al. (2017a) develop an architecture defining neural network approximators
that satisfy property 1 which they call DeepSets. Throught this thesis, we rely heavily
on the concept of DeepSets as the main tool allowing us to parametrize a function
mapping from an arbitrarily sized set to predictive distribution. A DeepSet f : X ∗ → R
is constructed by composing

f(X) = ρ(E(X)), E(X) =
∑
x∈X

ϕ(x) (2.11)

where ρ : X → Rd and ϕ : Rd → R are neural networks. In their work, Zaheer et al.
(2017a) prove the following universal representation theorems on DeepSets:

Theorem 2 (DeepSets: countable domain case). Let X be countable. A function
f : X ∗ → R is S-invariant if and only if it can be decomposed as

f(X) = ρ

(∑
x∈X

ϕ(x)
)

(2.12)

where ρ and ϕ are continuous functions.

Theorem 3 (DeepSets: uncountable domain case). Let X = [0, 1], n ∈ N, and
f : X n → R. Then f is Sn-invariant if and only if it can be decomposed as

f(X) = ρ

(∑
x∈X

ϕ(x)
)

(2.13)

where ρ and ϕ are continuous functions.

Note that theorems 2 and 3 do not completely characterize approximating functions
on sets as they are either restricted to either countable domains or fixed-sized sets. For

2.2 Neural Processes 17

x

yiz

i

i = 1, …, M

x

yj
z

j

j = 1, …, N

x

yi

i

i = 1, …, M

x

yj
z

j

j = 1, …, N

x

yi

i

i = 1, …, M

()c

()c

()t

()t

()c

()c

()t

()t

Fig. 2.1 Graphical model for the LNP with no distinction between context and target data
(left). Graphical model for the CNP (centre). Graphical model for the LNP interpreting the
LNP objective as a valid ELBO (right). The only distinction between the centre and right
figures is the treatment of the variable z. All graphical models depict a single dataset or task.

most machine learning applications and, in particular the ones examined in this thesis,
we are concerned with functions that take uncountable sets or varying size as inputs
and these theorems offer no guarantees on the form of such functions. However, Bloem-
Reddy and Teh (2020) extend theorem 3 to varying-sized sets on arbitrary spaces. In
Chapter 3 we provide a representation theorem for translation-equivariant functions on
sets, extending a key result of Zaheer et al. (2017b) to functional embeddings, including
sets of varying size.

2.2.3 Conditional Neural Processes

The simplest examples of a neural processes are conditional neural processes (CNPs)
(Garnelo et al., 2018a). CNPs are a class of meta-learning models which leverage the
flexibility of deep learning to define a stochastic process on target sets and produce
well-calibrated uncertainty. CNPs are end-to-end trained using a simple-to-implement
maximum-likelihood procedure. CNPs combine neural networks with features from
GPs but note that the architectures considered by Garnelo et al. (2018a) scale as
O(M +N) at test time compare to inference required when using classical GPs which
scale with O ((M +N)3) where M and N are the number of observations and targets.
As such, CNPs also require significantly less computation and memory than other
meta-learning approaches at test time, such as gradient-based fine tuning (Finn et al.,
2017; Triantafillou et al., 2019), making them ideal for resource and power-limited
applications, such as mobile devices.

CNPs make factorised predictions for y(t) using a construction similar to that in
equation 2.7. Specifically, given context set D(c) and target set D(t) = {x(t),y(t)} CNPs
define the predictive distribution:

18 Background

pθ
(
y(t) |x(t), D(c)

)
=
∫
pθ
(
z |D(c)

) N∏
i=1

pθ(y(t)
i |x

(t)
i , z) dz (2.14)

where θ are the network parameters. Instead of parameterizing a distribution,
pθ
(
z |D(c)

)
uses a DeepSet architecture to map the context set to a point estimate of

the latent vector z(c) = fθ(D(c)) defined by the architecture:

z
(c)
i = hθ(xi, yi) for all xi, yi ∈ D(c) (2.15)
z(c) = z

(c)
1 ⊕ z

(c)
2 ⊕ . . .⊕ z(c)

n (2.16)

where hθ : X × Y → Rd is a neural network and ⊕ is a commutative operation
mapping to a single element Rd, usually the sum or mean operation. The operation in
equation 2.16 is often called the aggregator. This point estimate can be interpreted as
setting pθ

(
z |D(c)

)
= δ

(
z − fθ(D(c))

)
in equation 2.14. See Figure 2.1 for the graphical

model. The intention is for fθ to map the context relevant task information contained
in D(c) to the vector representation such that the remaining CNP architecture is able
to condition on this specific task. The network fθ is often referred to as the encoder ,
mirroring the terminology used in Variational Auto-encoders (Kingma and Welling,
2014). For regression tasks, the decoder gθ is network that takes this task representation
z(c) and the target locations x(t) as inputs and parametrizes a distribution which factors
over the target points y(t). Typically, gθ parametrizes a Gaussian distribution via
neural networks µθ and σ2

θ :

pθ(y(t)
i |x

(t)
i , z) = N

(
y

(t)
i |µθ(x

(t)
i , z), σ2

θ(x
(t)
i , z)

)
(2.17)

Combining the encoder and decoder networks, CNPs define the predictive distribu-
tion via a forward pass through the networks:

pθ
(
y(t) |x(t), D(c)

)
=

∏
xi∈x(t)

N
(
y

(t)
i |µθ(x

(t)
i , fθ(D(c))), σ2

θ(x
(t)
i , fθ(D(c)))

)
(2.18)

Figure 2.2 illustrates the architecture for a CNP.
For classification tasks, gθ instead parametrizes the logits of the class probabilities

of a categorical distribution. As discussed in 2.2.1, this construction is Kolmogorov-
consistent and thus defines a stochastic process.

2.2 Neural Processes 19

x
()c
1

x
()c
2

x
()c
M

y
()c
1

y
()c
2

y
()c
M

h

h

h

z1

z2

zM

a z

()c

()c

()c

()c

Encoder Decoder

x
()t
1

x
()t
2

x
()t
N

y
()t
1

y
()t
2

y
()t
N

g

g

g

z()c

Fig. 2.2 Computation diagram for the CNP. The context set and target set are indicated
by blue and green variables respectively with shaded variables being observed. Boxes in the
diagram are learned components of the CNP architecture.

As noted by Garnelo et al. (2018a), one of the advantages of meta-training CNPs
to target prediction maps is that it shifts the burden of imposing prior knowledge from
user defined analytic priors to empirical data.

Training CNPs. Let (Dm)Mm=1 be a collection of tasks with context and target
splits Dm = D(c)

m ∪D(t)
m , and with D(c)

m = (x(c)
m ,y

(c)
m) and D(t)

m = (x(t)
m ,y

(t)
m) as defined in

2.1.1. Note that the context and target datasets may or may not be disjoint depending
on the training protocol.

We define

LML(θ,Dm) := log pθ
(
y(t)
m |x(t)

m , D
(c)
m

)
(2.19)

Assuming the tasks are drawn from some task distribution p(D), we can approximate
the expectation over tasks of the conditional log-likelihood of a CNP:

∫
LML(θ,D) dD ≈ 1

M

M∑
m=1

log pθ
(
y(t)
m |x(t)

m , D
(c)
m

)
(2.20)

In practice, CNP networks are implemented in automatic differentiation software
packages such as PyTorch (Paszke et al., 2017), TensorFlow (Abadi et al., 2016), or
JAX (Bradbury et al., 2018). The parameters of the networks θ are then learned by
optimizing equation 2.20 using stochastic gradient descent (Bottou, 2010).

Limitations of CNPs: Translation Equivariance. Translation equivariance is
an important inductive bias for many learning problems including time series modelling,
spatial data, and images. Famously, convolutional neural networks added translation

20 Background

x

y

x

Fig. 2.3 Samples from a CNP (left) which makes independent predictions, and a Gaussian
process (right) designed to generate function samples (blue) which are coherent. Coherent
samples are often necessary for downstream estimation tasks.

equivariance to standard multilayer perceptrons (Cohen and Welling, 2016; LeCun
et al., 1998). Unfortunately, it is not straightforward to incorporate CNNs into CNPs
to give us a translation equivariant model. We will discuss translation equivariance
and its connection to CNPs further in Chapter 3.

Limitations of CNPs: Coherent Samples. Despite the favourable qualities
CNPs exhibit, they are severely limited by the fact that they do not model dependencies
in their output. More specifically, given two target input locations xm and xm′ , CNPs
model their respective outputs ym and ym′ independently. In cases with Gaussian
likelihoods, the result is that any two function samples will be independent noise added
to the same mean function. We refer to such predictions as mean-field. The inability to
model dependencies hurts the predictive performance of CNPs and renders it impossible
to produce coherent function samples. Since many downstream tasks require dependent
function samples, this excludes mean-field CNPs form a range of applications. In
heatwave or flood prediction for example, we need to evaluate the probability of the
event that the temperature or precipitation remains above some threshold, throughout
a region of space and time. As illustrated by Figure 2.3, since mean-field predictions
model every location independently they may assign unreasonably low probabilities
to such events. If we were able to draw coherent samples from the predictive, the
probabilities of such events and similar useful quantities could be more reasonably
estimated.

Limitations of CNPs: AR consistency. Generally, when generating training
data, context and target sets are drawn from the same pool of data – there is no
meaningful distinction between the two (see figure 2.1). However, the CNP modelling
assumptions, represented by the graphical model in figure 2.1, treat the context and
target data as separate random variables. A consequence of this assumption is that
CNPs are not autoregressively consistent (AR-consistent) which we describe below.
Suppose we have two target points (x(t)

1 , y
(t)
1), (x(t)

2 , y
(t)
2) and context set D(c). CNPs

specify that the correct way to evaluate the conditional joint distribution at the target

2.2 Neural Processes 21

points is:

pθ
(
y

(t)
1 , y

(t)
2 |x

(t)
1 , x

(t)
2 , D(c)

)
= pθ

(
y

(t)
1 |x

(t)
1 , fθ(D(c))

)
· pθ

(
y

(t)
2 |x

(t)
2 , fθ(D(c))

)
. (2.21)

Under the product rule of probability we can write:

pθ
(
y

(t)
1 , y

(t)
2 |x

(t)
1 , x

(t)
2 , D(c)

)
= pθ

(
y

(t)
1 | y

(t)
2 , x

(t)
1 , x

(t)
2 , D(c)

)
· pθ

(
y

(t)
2 |x

(t)
2 , D(c)

)
. (2.22)

The conditional independence assumption of CNPs gives us that

pθ
(
y

(t)
1 | y

(t)
2 , x

(t)
1 , x

(t)
2 , D(c)

)
= pθ

(
y

(t)
1 |x

(t)
1 , D(c)

)
(2.23)

However, if context and target data are fundamentally the same random variable under
our model, from equation 2.22 we should be able to evaluate:

pθ
(
y

(t)
1 , y

(t)
2 |x

(t)
1 , x

(t)
2 , D(c)

)
= pθ

(
y

(t)
2 |x

(t)
2 , fθ(D(c) ∪ {(x(t)

1 , y
(t)
1)})

)
· pθ

(
y

(t)
1 |x

(t)
1 , fθ(D(c))

)
. (2.24)

This type of autoregressive evaluation is a way to bootstrap dependencies between
outputs and potentially induce coherent samples. Otherwise, any joint information
for outputs must be solely contained in the point estimate for z. Unfortunately, the
distribution generated by this autoregressive evaluation is not guaranteed to be (and
generally is not) consistent under permutation and marginalization thus violating
Kolmogorov-consistency, meaning that the distributions do not define a valid stochastic
process. We return to examine the AR perspective of CNPs in chapter 6.

2.2.4 Latent Neural Processes

Conditional neural processes are unable to produce coherent samples or model epistemic
uncertainty due to the point estimate of the global latent variable z in combination
with the conditional independence assumption in the graphical model. Latent neural
processes (LNPs; Garnelo et al., 2018b) are a generalization of conditional neural
processes that address these issues by estimating a conditional distribution over the
latent variable z in equation 2.14. This latent variable is able to capture global
uncertainty allowing us to sample at a global level – function samples are produced by
sampling from pθ(z |D(c)) and observation noise at each target location is generated
by the likelihoods pθ(y(t) |x(t), z). Garnelo et al. (2018b) propose viewing latent

22 Background

x
()c
1

x
()c
2

x
()c
M

y
()c
1

y
()c
2

y
()c
M

h

h

h

r1

r2

rM

a μ

Encoder Decoder

x
()t
1

x
()t
2

x
()t
N

y
()t
1

y
()t
2

y
()t
N

g

g

g

σ2

~

sample

μ σ2 z

Fig. 2.4 Computation diagram for the LNP. The context set and target set are indicated
by blue and green variables respectively with shaded variables being observed. Boxes in
the diagram are learned components of the CNP architecture and ∼ indicates a sampling
procedure to produce samples of the latent variable z.

neural processes as performing amortized approximate Bayesian inference and learning
(Kingma and Welling, 2014) in the following latent variable model, illustrated in
Figure 2.1:

z ∼ pθ(z); y(x) = fθ(x; z); (2.25)

LNPs use and encoder/decoder architecture similar to that of CNPs illustrated in
figure 2.4:

• The encoder hθ is a neural network that maps context pairs (x(c)
i , y

(c)
i) to a vector

representation r
(c)
i = hϕ(x(c)

i , y
(c)
i). The aggregator operation then summarises

the encoded inputs into a single global representation r(c) = r
(c)
1 ⊕ r

(c)
2 ⊕ . . .⊕ r(c)

n

where ⊕ is a commutative operation mapping to a single element Rd, usually the
sum or mean operation. Note that the encoder and aggregator are ρ and ϕ from
equation 2.11 comprising a DeepSet architecture. Together, they are generally
referred to as just the encoder, mirroring the terminology used by CNPs.

• The global representation r(c) is used to parametrize the distribution qϕ(z |D(c)) =
N
(
z |µ(r(c)), σ2(r(c))

)
. This is often called the amortized inference network.

• The (conditional) decoder takes sampled global variables z ∼ qϕ(z |D(c)) and
target locations and parametrizes pθ(y(t)

i |x
(t)
i , z) = N

(
y

(t)
i | gθ(x

(t)
i , z), σ2

)
via

the neural network gθ.

Training LNPs. Due to the intractability of pθ(y(t) |x(t), D(t)) an approximate
inference method needs to be used during training. Garnelo et al. (2018b) propose using

2.2 Neural Processes 23

amortized variational inference (Kingma and Welling, 2014; Rezende and Mohamed,
2015) to train the LNP end-to-end. For a task D with context and target splits
D = D(c) ∪D(t) the standard evidence lower-bound (ELBO) is given by:

log pθ(y(t),y(c) |x(t),x(c)) ≥ Eqϕ(z |D)

[
log pθ(y(t),y(c) | z,x(t),x(c)) + log pθ(z)

qϕ(z |D)

]
(2.26)

where qϕ is the amortized variational posterior parametrized by a neural network. In
order to train an LNP using this objective, we would need an analytic prior pθ(z),
shifting the burden of incorporating prior knowledge back onto the user instead of
learning from empirical data. An alternative objective that better reflects the model
use at test time is the conditional ELBO:

log pθ(y(t) |x(t), D(c)) ≥ Eqϕ(z |D)

[
log pθ(y(t) |x(t), z) + log pθ(z|D

(c))
qϕ (z |D)

]
. (2.27)

However, this objective still requires access to the (intractable) conditional prior
pθ(z|D(c)). Garnelo et al. (2018b) propose replacing this factor with the variational
posterior qϕ

(
z |D(c)

)
, which gives,

log pθ,ϕ(y(t) |x(t), D(c)) ≥ Eqϕ(z |D)

[
log pθ(y(t) |x(t), z) + log qϕ(z|D

(c))
qϕ (z |D)

]
. (2.28)

A first glance, there is no guarantee that this inequality holds once we replace one
of the factors with an approximation. However, let us reinterpret our model in the
following way: for any context set D(c) define the prior distribution over z using the
variational posterior qϕ(z |D(c)), illustrated in Figure 2.1. In this case, equation 2.28 is
a valid evidence lower-bound for a different model for each context and target set pair,
highlighted by writing the log-likelihood as log pθ,ϕ. We define:

LLNP (θ, ϕ,D) = Eqϕ(z |D)

[
log pθ(y(t) |x(t), z) + log qϕ(z|D

(c))
qϕ (z |D)

]
. (2.29)

Again, assuming the collection of tasks (Dk)Kk=1 are drawn from some task dis-
tribution p(D), we can approximate the expectation of the lower bound in equation
2.28 over p(D) using Monte-Carlo integration as in Equation (2.20). Meta-training
by maximizing equation 2.29 asks qϕ to simultaneously be a good amortized prior
network qϕ

(
z |D(c)

)
and a good amortized posterior qϕ

(
z |y(t),x(t), D(c)

)
when the

former means we are constantly redefining our model during training and we really

24 Background

x
()c
1

x
()c
2

x
()c
M

y
()c
1

y
()c
2

y
()c
M

h

h

h

r1

r2

r

a

Encoder Decoder

x
()t

y
()tg

z

h

h

h

r1

r2

rM

Cross-
attention

’

’

’

’

’

’

x
()c x

()c
21 x

()c
M x

()t
j

r()tj

r ()tj

~

j j
sample

j

M

μ σ2

μ σ2

Fig. 2.5 Computation diagram showing the prediction for a single target point x
(t)
j for the

ALNP. The context set is indicated by blue and a single target point is indicated by the green
variable with shaded variables being observed. Boxes in the diagram are learned components
of the CNP architecture and ∼ indicates the sampling procedure to produce samples of the
latent variable z.

only care about its performance as the latter. It also has the potential to overfit the
prior to the posterior if too few tasks are seen during meta-training.

LNPs allow for coherent samples and a provide a way of modelling global uncertainty
– two important features missing from CNPs. In exchange, LNPs give up the simple
maximum likelihood training procedure of CNPs at the cost of the more difficult
variational inference using the modified ELBO objective. We return to the discussion
of training LNPs in Sections 4.3.2 and 4.4.1.

2.2.5 Attentive Neural Processes

The representational power of CNPs scales poorly with the capacity of the encoder
and decoder resulting in models that tent to underfit (Gordon et al., 2020; Kim et al.,
2019; Louizos et al., 2019). An important point of comparison that will be considered
throughout this thesis is the attentive neural process (ANP) which addresses this issue.
Kim et al. (2019) introduce two variants of the attentive neural process, a conditional
version that we will call the attentive conditional neural process (ACNP) and a latent
variable version that we will call the attentive latent neural process (ALNP). The
ACNP uses an attention mechanism (Bahdanau et al., 2014; Vaswani et al., 2017; Xu
et al., 2015) to replace the general context point representations r = fθ(D(c)) with

2.3 Conclusion and Discussion 25

target-specific context point representations r′j = fθ(D(c), x
(t)
j) for each x

(t)
j ∈ D(t). Let

ri = hθ(x(c)
i , y

(c)
i), i = 1, . . .M be the context point encodings defined in equation 2.15.

Then for each target point xj ∈ D(t) we define:

r′j =
M∑
i=1

wθ(x(t)
j , x

(c)
i)ri∑M

k=1 wθ(x
(t)
j , x

(c)
k)

(2.30)

where wθ is an attention function with learned parameters θ. Notice that setting
wθ(x(t)

j , x
(c)
i) = 1 recovers the standard CNP. Kim et al. (2019) show that using self

attention layers (Parmar et al., 2018; Vaswani et al., 2017) improves performance of
the ACNP.

The attentive latent neural process is the latent variable analog of the ACNP.
However, instead of replacing the point estimate of the variable r with a distribution
p(r |D(c)) mirroring the relationship between CNPs and LNPs, Kim et al. (2019) add
a latent variable path to the architecture parametrizing a conditional distribution
pθ(z |D(c)) for an additional, but target-independent, latent variable z. In this case, the
part of the architecture producing rj defined in equation 2.30 is called the deterministic
path. The architecture for the ACNP and ALNP are illustrated in figure 2.5. ACNPs
and ALNPs are trained using the same objectives as CNPs (equation 2.20) and LNPs
(equation 2.29) respectively. Note that the addition of attention to the architecture
raises the computations cost from O(M +N) to O(M(M +N)) during test time.

2.3 Conclusion and Discussion

In this chapter we presented the main concepts considered in this thesis, in particular,
the meta-learning machine learning framework, the prediction map formulation of the
meta-learning problem, stochastic processes, and the neural process family of models.
These will be the building blocks for the work presented in the remainder of this thesis.
In the next chapter, we return to the topic of translation equivariance and extend the
conditional neural process family to include a member that is translation equivariant.
We show that this inductive bias helps CNPs achieve improved predictive performance
over standard CNPs and ACNPs on synthetic, real-world, and image data.

Chapter 3

Convolutional Conditional Neural
Processes

As discussed in Section 1.1, when modelling many real-world datasets, such as those
with spatio-temporal input variables or images, it is advantageous in terms of training
efficiency and model performance to incorporate translation equivariance into our
modelling assumptions, as we will see in Section 3.5. Our goal for the following
chapter is to extend the conditional neural process family to include a member that
is translation equivariant. Convolutional neural networks (CNNs) are neural network
architectures that are translation equivariant and we will present a CNP architecture
that build CNNs into its encoder and decoder to define the convolutional conditional
neural process (ConvCNP). ConvCNPs incorporate translation equivariance into their
inductive bias for more effecient training and performance on suitable applications
such as spatio-temporal data modelling.

3.1 Introduction

As discussed in chapter 2, Neural processes (NPs; Garnelo et al., 2018a,b) are a rich
class of meta-learning models that produce conditional distributions p(y(t)|x(t), D(c))
over target variables y(t) given input variables x(t), parameters θ, and a set of observed
data points in a context set D(c) = {x(c)

m ,y
(c)
m }Mm=1. Natural application areas of NPs

include time series, spatial data, and images with missing values. Consequently, such
domains have been used extensively to benchmark NPs (Garnelo et al., 2018a,b; Kim
et al., 2019). Often, ideal solutions to prediction problems in such domains should be
translation equivariant: if the data are translated in time or space, then the predictions
should be translated correspondingly (Cohen and Welling, 2016; Kondor and Trivedi,

28 Convolutional Conditional Neural Processes

2018). As such, NPs would ideally have translation equivariance built directly into the
modelling assumptions as an inductive bias. Previously, NP models must learn this
structure directly from the data set, which is sample and parameter inefficient as well
as impacting the ability of the models to generalize.

In this chapter, we build translation equivariance into CNPs. Famously, con-
volutional neural networks added translation equivariance to standard multilayer
perceptrons (Cohen and Welling, 2016; LeCun et al., 1998). However, it is not straight-
forward to generalize NPs in an analogous way: (i) CNNs require data to live “on the
grid” (e.g. image pixels form a regularly spaced grid), while many of the above domains
have data that live “off the grid” (e.g. time series data may be observed irregularly at
any time t ∈ R). (ii) NPs operate on partially observed context sets whereas CNNs
typically do not. (iii) NPs rely on embedding sets into a finite-dimensional vector space
for which the notion of equivariance with respect to input translations is not natural,
as we detail in Section 3.3.

The work in this chapter is based on the publication ‘Convolutional Conditional
Neural Processes’ presented in the International Conference on Learning Representa-
tions, 2020 (Gordon et al., 2020). The research was conducted with the lead authors
Jonathan Gordan, and Wessel P. Bruinsma, collaborators Andrew Y. K. Foong, and
Yann Dubois as well as our advisor Richard E. Turner. I contributed to the concep-
tualisation and development of the model, writing software1, and helped develop the
theory. I led the experiments on complex time series (see Sections 3.5.2 and 3.5.3),
and wrote these sections of the original paper and appendix. I contributed to the
implementation of the Synthetic 1D Experiments and conducted the final versions of
these experiments (see Section 3.5.1). I also wrote these sections of the original paper
and appendix. The above work conducted by me, and all other work in the paper,
including the writing and editing, was a collaborative effort by our entire team.

In this chapter, we introduce the ConvCNP, a member of the NP family that
accounts for translation equivariance. This is achieved by extending the theory of
learning on sets (see 2.2.2) to include functional representations, which in turn can be
used to express any translation-equivariant NP model. The key contributions in this
chapter can be summarized as follows:

(i) We provide a representation theorem for translation-equivariant functions on
sets, extending a key result of Zaheer et al. (2017b) to functional embeddings,
including sets of varying size.

1Source code available at https://github.com/cambridge-mlg/convcnp

https://github.com/cambridge-mlg/convcnp

3.2 Translation Equivariance 29

(ii) We extend the NP family of models to include translation equivariance.

(iii) We evaluate the ConvCNP and demonstrate that it exhibits excellent performance
on several synthetic and real-world benchmarks.

The outline of this chapter closely follows these contributions: we first outline the
theoretical foundations for the ConvCNP. Next we define the ConvCNP model and
describe the architecture choices guided by the earlier theory. Finally, we evaluate
the performance of the ConvCNP on both on-the-grid (continuous) and off-the-grid
(descrete) settings.

3.1.1 Notation

For convenience, we outline the notation that will be used in this chapter: let X = Rn

and Y ⊆ Rd, Y compact, be the spaces of inputs and outputs (though to ease notation,
we often assume Y ⊆ R). Define ZM = (X ×Y)M as the collection of M input–output
pairs, Z≤M = ⋃M

m=1ZM as the collection of at most M pairs, and Z = ⋃∞
m=1ZM as the

collection of finitely many pairs. Since we will consider S-invariant functions (property
1), also called permutation-invariant, functions on Z, we may refer to elements of Z as
sets or data sets. Furthermore, we will use the notation [n] = {1, . . . , n}.

We will write the predictive distributions of CNPs as p(y|x, Z) = p(y|Φ(x, Z),θ).
Φ is defined as a composition ρ ◦ E of an encoder E : Z → Rd mapping into the
embedding space Rd and a decoder ρ : Rd → Cb(X ,Y). Here E(Z) ∈ Rd is a vector
representation of the set Z, and Cb(X ,Y) is the space of continuous, bounded functions
X → Y endowed with the supremum norm.

3.2 Translation Equivariance

The focus of this work is on models that are translation equivariant: if the input
locations of the data are translated by an amount τ , then the predictions should be
translated correspondingly. Translation equivariance for functions operating on sets is
formalized in Property 2.

Property 2 (Translation equivariant mappings on sets). Let H be an appropriate
space of functions on X = Rn, and define T and T ′ as follows:

T : X × Z → Z, TτZ = ((x1 + τ ,y1), . . . , (xm + τ ,ym)),
T ′ : X ×H → H, T ′τh(x) = h(x− τ).

30 Convolutional Conditional Neural Processes

Then a mapping Φ: Z → H is called translation equivariant if Φ(TτZ) = T ′τΦ(Z) for
all τ ∈ X and Z ∈ Z.

3.3 Convolutional Deep Sets

We are interested in translation equivariance (Property 2) with respect to translations
on X . The CNP encoder E maps sets Z to an embedding in a vector space Rd, for
which the notion of equivariance with respect to input translations in X is not well
defined. For example, a function f on X can be translated by τ ∈ X : f(• − τ).
However, for a vector x ∈ Rd, which can be seen as a function [d]→ R, x(i) = xi, the
translation x(• − τ) is not well-defined. To overcome this issue, we enrich the encoder
E : Z → H to map into a function space H containing functions on X . Since functions
in H map from X , our notion of translation equivariance (Property 2) is now also well
defined for E(Z). As we demonstrate below, every translation-equivariant function on
sets has a representation in terms of a specific functional embedding.

Definition 2 (Functional mappings on sets and functional representations of sets).
Call a map E : Z → H a functional mapping on sets if it maps from sets Z to an
appropriate space of functions H. Furthermore, call E(Z) the functional representation
of the set Z.

Considering functional representations of sets leads to the key result of this work,
which can be summarized as follows. For an appropriate Z ′ ⊆ Z, a continuous function
Φ: Z ′ → Cb(X ,Y) satisfies properties 1 and 2 if and only if it has a representation of
the form

Φ(Z) = ρ (E(Z)) , E(Z) = ∑
(x,y)∈Zϕ(y)ψ(• − x) ∈ H, (3.1)

for some continuous and translation-equivariant ρ : H → Cb(X ,Y), and appropriate ϕ
and ψ. Note that ρ is a map between function spaces. We also remark that continuity
of Φ is not in the usual sense; we return to this below.

Equation (3.1) defines the encoder used by our proposed model, the ConvCNP. In
Section 3.3.1, we present the theoretical results in more detail. In particular, Thm 1
establishes equivalence between any function satisfying properties 1 and 2 and the
representational form in Equation (3.1). In doing so, we provide an extension of the key
result of Zaheer et al. (2017b) discussed in Section 2.2.2 to functional representations
on sets, and show that it can naturally be extended to handle varying-size sets. The

3.3 Convolutional Deep Sets 31

practical implementation of ConvCNPs — the design of ρ, ϕ, and ψ — is informed
by our results in Section 3.3.1 (as well as the proofs, provided in Section A.1), and is
discussed for domains of interest in Section 3.4.

3.3.1 Representations of Translation Equivariant Functions
on Sets

In this section we establish the theoretical foundation of the ConvCNP. We begin by
stating a definition that is used in our main result.

Definition 3 (Multiplicity). A collection Z ′ ⊆ Z is said to have multiplicity K if, for
every set Z ∈ Z ′, every x occurs at most K times:

multZ ′ := sup {sup {|{i ∈ [m] : xi = x̂}| : x̂ = x1, . . . ,xm
number of times every x occurs

} : (xi, yi)mi=1 ∈ Z ′} = K.

For example, in the case of real-world data like time series and images, we often
observe only one (possibly multi-dimensional) observation per input location, which
corresponds to multiplicity one. We are now ready to state our key theorem.

Theorem 1. Consider a collection Z ′≤M ⊆ Z≤M with multiplicity K such that, for
all m ∈ [M], Z ′≤M ∩ Zm is topologically closed and closed under permutations and
translations. Then a function Φ: Z ′≤M → Cb(X ,Y) is continuous2, permutation in-
variant (Property 1)), and translation equivariant (Property 2) if and only if it has a
representation of the form

Φ(Z) = ρ (E(Z)) , E((x1, y1), . . . , (xm, ym)) = ∑m
i=1 ϕ(yi)ψ(• − xi)

for some continuous and translation-equivariant ρ : H → Cb(X ,Y) and some continuous
ϕ : Y → RK+1 and ψ : X → R, where H is an appropriate space of functions that
includes the image of E. We call a function Φ of the above form a convolutional
DeepSet (ConvDeepSet).

The proof of Thm 1 is provided in Section A.1. We here discuss several key points
from the proof that have practical implications and provide insights for the design of
ConvCNPs: (i) For the construction of ρ and E, ψ is set to a flexible positive-definite

2For every m ∈ [M], the restriction Φ|Z′
≤M

∩Zm
is continuous.

32 Convolutional Conditional Neural Processes

kernel associated with a Reproducing Kernel Hilbert Space (RKHS; Aronszajn (1950)),
which results in desirable properties for E. (ii) Using the work by Zaheer et al. (2017b),
we set ϕ(y) = (y0, y1, · · · , yK) to be the powers of y up to order K. (iii) Thm 1 requires
ρ to be a powerful function approximator of continuous, translation-equivariant maps
between functions. In Section 3.4, we discuss how these theoretical results inform our
implementations of ConvCNPs.

Thm 1 extends the result of Zaheer et al. (2017b), discussed in Chapter 2, by
embedding the set into an infinite-dimensional space — the RKHS — instead of a
finite-dimensional space. Beyond allowing the model to exhibit translation equivariance,
the RKHS formalism allows us to naturally deal with finite sets of varying sizes, which
turns out to be challenging with finite-dimensional embeddings. Furthermore, our
formalism requires ϕ(y) = (y0, y1, y2, . . . , yK) to expand up to order no more than the
multiplicity of the sets K; if K is bounded, then our results hold for sets up to any
arbitrarily large finite size M , while fixing ϕ to be only (K + 1)-dimensional.

3.4 Convolutional Conditional Neural Processes

In this section we discuss the architectures and implementation details for ConvCNPs.
Similar to CNPs, ConvCNPs model the conditional distribution as

p(y(t)|x(t), D(c)) =
N∏
n=1

p(y(t)
n |Φθ(D(c))(x(t)

n)) (3.2)

=
N∏
n=1
N (y(t)

n ;µn,Σn) with (µn,Σn) = Φθ(D(c))(x(t)
n), (3.3)

where D(c) is the context set and Φ a ConvDeepSet. The key considerations are the
design of ρ, ϕ, and ψ for Φ. We provide separate models for data that lie on-the-grid
and data that lie off-the-grid.

Form of ϕ. The applications considered in this work have a single (potentially
multi-dimensional) output per input location, so the multiplicity of D is one (i.e.,
K = 1) where context sets D(c) ⊆ D. It then suffices to let ϕ be a power series of order
one, which is equivalent to appending a constant to y in all data sets, i.e. ϕ(y) = [1 y]⊤.
The first output ϕ1 thus provides the model with information regarding where data has
been observed, which is necessary to distinguish between no observed datapoint at x
and a datapoint at x with y = 0. Denoting the functional representation as h, we can
think of the first channel h(0) as a “density channel”. We found it helpful to divide the
remaining channels h(1:) by h(0) (Algorithm 2, line 4), as this improved performance

3.4 Convolutional Conditional Neural Processes 33

Context set D = (xn, yn)n
N
=1

y

x

1

Functional representation

h(0)= h
(1)

=
y∑

(density channel)

x x

Evaluate at discretization ()i
T
=1

2 3

Apply CNN and predict

[
µ(x(t))
σ(x(t))

]
=

T∑

i=1

[
fµ(ti)

efσ(ti)

]
ψρ(x

(t)−ti)

x1
(t) x2

(t) x3
(t) x4

(t)

p(y3
(t) x| 3

(t),)
y

(c)

ψ(· −xn(c))

∑
(c)
nψ(· −x(c)n)

(c) (c)

∑
ψ(· −xn(c))

ti

D (c)

Fig. 3.1 Illustration of the ConvCNP forward pass in the off-the-grid case

when there is large variation in the density of input locations. In the image processing
literature, this is known as normalized convolution (Knutsson and Westin, 1993). The
normalization operation can be reversed by ρ and is therefore not restrictive.

ConvCNPs for off-the-grid data. Having specified ϕ, it remains to specify
the form of ψ and ρ. Our proof of Thm 1 suggests that ψ should be a stationary,
non-negative, positive-definite kernel. The exponentiated-quadratic (EQ) kernel with a
learnable length scale parameter is a natural choice. This kernel is multiplied by ϕ to
form the functional representation E(D(c)) (Algorithm 2, line 3; and Figure 3.1, arrow
1).

Next, Thm 1 suggests that ρ should be a continuous, translation-equivariant map
between function spaces. Kondor and Trivedi (2018) show that, in deep learning,
any translation-equivariant model has a representation as a CNN. However, CNNs
operate on discrete (on-the-grid) input spaces and produce discrete outputs. In order
to approximate ρ with a CNN, we discretize the input of ρ, apply the CNN, and finally
transform the CNN output back to a continuous function X → Y . To do this, for each
context and test set, we space points (ti)ni=1 ⊆ X on a uniform grid (at a pre-specified
density) over a hyper-cube that covers both the context and target inputs. We then
evaluate (E(D(c))(ti))ni=1 (Algorithm 2, lines 1–2; Figure 3.1, arrow 2). This discretized
representation of D(c) is then passed through a CNN (Algorithm 2, line 5; Figure 3.1,
arrow 3).

To map the output of the CNN back to a continuous function X → Y, we use
the CNN outputs as weights for evenly-spaced basis functions (again employing the
EQ kernel), which we denote by ψρ (Algorithm 2, lines 6–7; Figure 3.1, arrow 3).
The resulting approximation to ρ is not perfectly translation equivariant, but will be
approximately so for length scales larger than the spacing of (E(D(c))(ti))ni=1. The
resulting continuous functions are then used to generate the (Gaussian) predictive mean
and variance at any input. This, in turn, can be used to evaluate the log-likelihood.

ConvCNP for on-the-grid data. While ConvCNP is readily applicable to many
settings where data live on a grid, in this work we focus on the image setting. As

34 Convolutional Conditional Neural Processes

Algorithm 2 ConvCNP Forward Pass for Off-the-grid Data.
Require: ρ = (CNN, ψρ), ψ, and density γ
Require: context set (x(c)

n , y
(c)
n)Nn=1, target points (x(t)

m)Mm=1
1: lower, upper← range

(
(xn)Nn=1∪(x∗m)Mm=1

)
2: (ti)Ti=1 ← uniform_grid(lower, upper; γ)
3: hi ←

∑N
n=1

[
1 yn

]⊤
ψ(ti − xn)

4: h(1:)
i ← h

(1:)
i /h

(0)
i

5: (fµ(ti), fσ(ti))Ti=1 ← CNN((ti,hi)Ti=1)
6: µm ←

∑T
i=1 fµ(ti)ψρ(x∗m − ti)

7: σm ←
∑T
i=1 pos(fσ(ti))ψρ(x∗m − ti)

8: return (µm,σm)Mm=1

such, the following description uses the image completion task as an example, which
is often used to benchmark NPs (Garnelo et al., 2018a; Kim et al., 2019). Compared
to the off-the-grid case, the implementation becomes simpler as we can choose the
discretization (ti)ni=1 to be the pixel locations.

Let I ∈ RH×W×C be an image — H,W,C denote the height, width, and number of
channels, respectively — and let Mc be the context mask, which is such that [Mc]i,j = 1
if pixel location (i, j) is in the context set, and 0 otherwise. To implement ϕ, we select
all context points, D(c) := Mc ⊙ I, and prepend the context mask: ϕ = [Mc, D

(c)]⊤

(Algorithm 3, line 3).
Next, we apply a convolution to the context mask to form the density channel:

h(0) = convθ(Mc) (Algorithm 3, line 3). To all other channels, we apply a normalized
convolution: h(1:C) = convθ(y)/h(0) (Algorithm 3, line 4), where the division is
element-wise. The filter of the convolution is analogous to ψ, which means that h
is the functional representation, with the convolution performing the role of E (the
summation in Algorithm 2, line 3). Although the theory suggests using a non-negative,
positive-definite kernel, we did not find significant empirical differences between an
EQ kernel and using a fully trainable kernel restricted to positive values to enforce
non-negativity (see Sections A.4.4 and A.4.5 for details).

Lastly, we describe the on-the-grid version of ρ(·), which consists of two stages.
First, we apply a CNN to E(D(c)) (Algorithm 3, line 5). Second, we apply a shared,
pointwise MLP that maps the output of the CNN at each pixel location in the target set
to R2C , where we absorb MLP into the CNN (MLP can be viewed as an 1×1 convolution).
The first C outputs are the means of a Gaussian predictive distribution and the second
C the standard deviations, which then pass through a positivity-enforcing function

3.5 Experiments and Results 35

(Algorithm 3, line 6–7). To summarise, the on-the-grid algorithm is given by

(µ, pos−1(σ)) = CNN
ρ

(
E(context set)

[conv(Mc)
density channel

; conv(Mc ⊙ I)/conv
multiplies by ψ and sums

(Mc)]⊤), (3.4)

where (µ,σ) are the image mean and standard deviation, ρ is implemented with CNN,
and E is implemented with the mask Mc and convolution conv.

Training. Denoting the data sets {Dn}Nn=1 ⊆ D, and the parameters by θ,
maximum-likelihood training involves (Garnelo et al., 2018a,b)

θ∗ = arg maxθ∈Θ
∑N
n=1

∑
(x(t),y(t))∈D(t)

n
log p(y |Φθ(D(c)

n)(x)), (3.5)

where we have split Dn into context (D(c)
n) and target (D(t)

n) sets. This is standard
practice in the NP (Garnelo et al., 2018a,b) and meta-learning settings (Finn et al.,
2017; Gordon et al., 2019) and relates to neural auto-regressive models (Requeima
et al., 2019), as discussed in Section 2.2.3. Note that the context set and target set are
disjoint (D(c)

n ∩D(t)
n = ∅), which differs from the protocol for the CNP (Garnelo et al.,

2018a). Practically, stochastic gradient descent methods (Bottou, 2010) are used for
optimization.

Algorithm 3 ConvCNP Forward Pass for On-the-grid Data.
Require: ρ = CNN and E = convθ
Require: image I, context mask Mc, and target mask Mt

1: D(c) ← Mc ⊙ I
2: h← convθ([Mc, D

(c)
n]⊤)

3: h(1:C) ← h(1:C)/h(0)

4: ft ← Mt ⊙ CNN(h)
5: µ← f

(1:C)
t

6: σ ← pos(f (C+1:2C)
t)

7: return (µ,σ)

3.5 Experiments and Results

We evaluate the performance of ConvCNPs in both on-the-grid and off-the-grid settings
focusing on two central questions: (i) Do translation-equivariant models improve per-
formance in appropriate domains? (ii) Can translation equivariance enable ConvCNPs
to generalize to settings outside of those encountered during training? We use several

36 Convolutional Conditional Neural Processes

off-the-grid data-sets which are irregularly sampled time series (X = R), comparing to
Gaussian processes (GPs; Williams and Rasmussen (2006)) and ACNP (which is the
version of the Attentive Neural Process (Kim et al., 2019) without the latent path in
the encoder, see Section 2.2.4), the best performing member of the CNP family during
the development of the ConvCNP. We then evaluate on several on-the-grid image data
sets (X = Z2). In all settings we demonstrate substantial improvements over existing
neural process models. For the CNN component of our model, we propose a small and
large architecture for each experiment (in the experimental sections named ConvCNP
and ConvCNPXL, respectively). We note that these architectures are different for
off-the-grid and on-the-grid experiments, with full details regarding the architectures
given in appendices A.3 and A.4.

3.5.1 Synthetic 1D Experiments

First we consider synthetic regression problems. At each iteration, a function is
sampled, followed by context and target sets. Beyond EQ-kernel GPs (as in Garnelo
et al. (2018a); Kim et al. (2019)), we consider more complex data arising from Matern–5

2
and weakly-periodic kernels, as well as a challenging, non-Gaussian sawtooth process
with random shift and frequency (see Figure 3.2, for example). ConvCNP is compared
to the CNP (Garnelo et al., 2018a) and ACNP. Training and testing procedures are
fixed across all models. Full details on models, data generation, and training procedures
are provided in Section A.3.

Model Params EQ Weak Periodic Matern Sawtooth
CNP 66818 -0.86 ± 3e-3 -1.23 ± 2e-3 -0.95 ± 1e-3 -0.16 ± 1e-5
ACNP 149250 0.72 ± 4e-3 -1.20 ± 2e-3 0.10 ± 2e-3 -0.16 ± 2e-3
ConvCNP 6537 0.70 ± 5e-3 -0.92 ± 2e-3 0.32 ± 4e-3 1.43 ± 4e-3
ConvCNPXL 50617 1.06 ± 4e-3 -0.65 ± 2e-3 0.53 ± 4e-3 1.94 ± 1e-3

Table 3.1 Log-likelihood from synthetic 1-dimensional experiments.

Table 3.1 reports the log-likelihood means and standard errors of the models over
1000 tasks. The context and target points for both training and testing lie within the
interval [−2, 2] where training data was observed (marked “training data range” in
Figure 3.2). Table 3.1 demonstrates that, even when extrapolation is not required,
ConvCNP significantly outperforms other models in all cases, despite having fewer
parameters.

3.5 Experiments and Results 37
C

on
vC

N
P

Fig. 3.2 Example functions learned by the AttnCNP (top row), and ConvCNP (bottom
row), when trained on a Matern–5

2 kernel with length scale 0.25 (first and second column)
and sawtooth function (third and fourth column). Columns one and three show the predictive
posterior of the models when data is presented in same range as training, with predictive
posteriors continuing beyond that range on either side. Columns two and four show model
predictive posteriors when presented with data outside the training data range. Plots show
means and two standard deviations.

Figure 3.2 demonstrates that ConvCNP generates excellent fits, even for challenging
functions such as from the Matern–5

2 kernel and sawtooth. Moreover, Figure 3.2
compares the performance of ConvCNP and ACNP when data is observed outside the
range where the models were trained: translation equivariance enables ConvCNP to
elegantly generalize to this setting, whereas ACNP is unable to generate reasonable
predictions.

3.5.2 PLAsTiCC Experiments

The PLAsTiCC data set (Allam Jr et al., 2018) is a simulation of transients observed
by the LSST telescope under realistic observational conditions. The data set contains
3,500,734 “light curves”, where each measurement is of an object’s brightness as a
function of time, taken by measuring the photon flux in six different astronomical filters.
The data can be treated as a six-dimensional time series. The data set was introduced
in a Kaggle competition,3 where the task was to use these light curves to classify the
variable sources. The winning entry (Avocado, Boone, 2019) modeled the light curves
with GPs and used these models to generate features for a gradient boosted decision
tree classifier. We compare a multi-input–multi-output ConvCNP with the GP models
used in Avocado.4 ConvCNP accepts six channels as inputs, one for each astronomical
filter, and returns 12 outputs — the means and standard deviations of six Gaussians.

3https://www.kaggle.com/c/PLAsTiCC-2018
4Full code for Avocado, including GP models, is available at https://github.com/kboone/avocado.

38 Convolutional Conditional Neural Processes

Full experimental details are given in Section A.3.3. The mean squared error of both
approaches is similar, but the held-out log-likelihood from the ConvCNP is far higher
(see Table 3.2).

Model Log-likelihood MSE
Kaggle GP (Boone, 2019) -0.335 ± 0.09 0.037 ± 4e-3
ConvCP (ours) 1.31 ± 0.30 0.040 ± 5e-3

Table 3.2 Mean and standard errors of log-likelihood and root mean squared error over 1000
test objects from the PLastiCC dataset.

3.5.3 Predator-Prey Models: Sim2Real

The ConvCNP model is well suited for applications where simulation data is plentiful,
but real-world training data is scarce (Sim2Real). The ConvCNP can be trained on a
large amount of simulation data and then be deployed with real-world training data
as the context set. We consider the Lotka–Volterra model (Wilkinson, 2011), which
is used to describe the evolution of predator–prey populations. This model has been
used in the approximate Bayesian computation literature where the task is to infer the
parameters from samples drawn from the Lotka–Volterra process (Papamakarios and
Murray, 2016). These methods do not simply extend to prediction problems such as
interpolation or forecasting. In contrast, we train ConvCNP on synthetic data sampled
from the Lotka–Volterra model and can then condition on real-world data from the
Hudson’s Bay lynx–hare data set (Leigh, 1968) to perform interpolation (see Figure 3.3;
full experimental details are given in Section A.3.4). The ConvCNP performs accurate
interpolation as shown in Figure 3.3.

Fig. 3.3 Left and centre: two samples from the Lotka–Volterra process (sim). Right: Con-
vCNP trained on simulations and applied to the Hudson’s Bay lynx-hare dataset (real).
Plots show means and two standard deviations.

We attempted to train an ACNP for comparison, but due to the nature of the
synthetic data generation, many of the training series end before 90 time units, the

3.5 Experiments and Results 39

length of the Hudson’s Bay lynx-hare series. Effectively, this means that the ACNP
was asked to predict outside of its training interval, a task that it struggles with, as
shown in Section 3.5.1. The plots in Figure 3.4 show that the ACNP is able to learn
the first part of the time series but is unable to model data outside of the first 20 or so
time units. Perhaps with more capacity and training epochs the ACNP training would
be more successful. Note from Figure 3.3 that our model does better on the synthetic
data than on the real data. This could be due to the parameters of the Lotka–Volterra
model used being a poor estimate for the real data.

Fig. 3.4 ACNP performance on two samples from the Lotka–Volterra process (sim).

3.5.4 2D Image Completion Experiments

To test ConvCNP beyond one-dimensional features, we evaluate our model on on-
the-grid image completion tasks and compare it to ACNP. Image completion can be
cast as a prediction of pixel intensities y(t)

i (∈ R3 for RGB, ∈ R for greyscale) given a
target 2D pixel location x

(t)
i conditioned on an observed (context) set of pixel values

D(c) = (x(c)
n , y

(c)
n)Nn=1. In the following experiments, the context set can vary but the

target set contains all pixels from the image. Further experimental details are in
Section A.4.

Standard benchmarks. We first evaluate the model on four common benchmarks:
MNIST (LeCun et al., 1998), SVHN (Netzer et al., 2011), and 32 × 32 and 64 × 64
CelebA (Liu et al., 2018b). Importantly, these data sets are biased towards images
containing a single, well-centered object. As a result, perfect translation-equivariance
might hinder the performance of the model when the test data are similarly structured.
We therefore also evaluated a larger ConvCNP that can learn such non-stationarity,
while still sharing parameters across the input space (ConvCNPXL).

Table 3.3 shows that ConvCNP significantly outperforms ACNP when it has a
large receptive field size, while being at least as good with a small receptive field size.

40 Convolutional Conditional Neural Processes

(a) Log-likelihood and qualitative results on ZSMM. The
top row shows the log-likelihood distribution for both
models. The images below correspond to the context
points (top), ConvCNP target predictions (middle), and
ACNP target predictions (bottom). Each column corre-
sponds to a given percentile of the ConvCNP distribu-
tion.

(b) Qualitative evaluation of a Con-
vCNPXL trained on the unscaled
CelebA (218 × 178) and tested on
Ellen’s Oscar unscaled (337× 599)
selfie (DeGeneres, 2014) with 5% of
the pixels as context (top).

Fig. 3.5 Zero shot generalization to tasks that require translation equivariance.

Model Params MNIST SVHN
ACNP 410k 1.08 ±0.04 3.94 ±0.02
ConvCNP 113k 1.21 ±0.00 3.89 ±0.01
ConvCNPXL 400k 1.27 ±0.01 3.97 ±0.02

Model CelebA32 CelebA64 ZSMM
ACNP 3.18 ±0.02 -0.83 ±0.08
ConvCNP 3.22 ±0.02 3.66 ±0.01 1.18 ±0.04
ConvCNPXL 3.39 ±0.02 3.73 ±0.01 0.86 ±0.12

Table 3.3 Log-likelihood from image experiments (6 runs).

Qualitative samples for various context sets can be seen in Figure 3.6. Further qualita-
tive comparisons and ablation studies can be found in Section A.4.3 and Section A.4.4
respectively.

Generalization to multiple, non-centered objects. The data sets from
the previous paragraphs were centered and contained single objects. Here we test
whether ConvCNPs trained on such data can generalize to images containing multiple,
non-centered objects.

3.5 Experiments and Results 41

The last column of Table 3.3 evaluates the models in a zero-shot multi MNIST
(ZSMM) setting, where images contain multiple digits at test time (Section A.4.2).
ConvCNP significantly outperforms ACNP on such tasks. Figure 3.5a shows a histogram
of the image log-likelihoods for ConvCNP and ACNP, as well as qualitative results at
different percentiles of the ConvCNP distribution. ConvCNP is able to extrapolate to
this out-of-distribution test set, while ACNP appears to model the bias of the training
data and predict a centered “mean” digit independently of the context. Interestingly,
ConvCNPXL does not perform as well on this task. In particular, we find that, as the
receptive field becomes very large, performance on this task decreases. We hypothesize
that this has to do with behavior of the model at the edges of the image. CNNs with
larger receptive fields — the region of input pixels that affect a particular output pixel

— are able to model non-stationary behavior by looking at the distance from any pixel
to the image boundary. We expand on this discussion and provide further experimental
evidence regarding the effects of receptive field on the ZSMM task in Section A.4.6.

Although ZSMM is a contrived task, note that our field of view usually contains
multiple independent objects, thereby requiring translation equivariance. As a more
realistic example, we took a ConvCNP model trained on CelebA and tested it on a
natural image of different shape which contains multiple people (Figure 3.5b). Even
with 95% of the pixels removed, the ConvCNP was able to produce a qualitatively
reasonable reconstruction. A comparison with ACNP is given in Section A.4.3.

Computational efficiency. Beyond the performance and generalization improve-
ments, a key advantage of the ConvCNP is its computational efficiency. The memory
and time complexity of a single self-attention layer grows quadratically with the number
of inputs M (the number of pixels for images) but only linearly for a convolutional
layer.

Empirically, with a batch size of 16 on 32 × 32 MNIST, ConvCNPXL requires
945MB of VRAM, while ACNP requires 5839 MB. For the 56×56 ZSMM ConvCNPXL
increases its requirements to 1443 MB, while ACNP could not fit onto a 32GB GPU.
Ultimately, ACNP had to be trained with a batch size of 6 (using 19139 MB) and we
were not able to fit it for CelebA64. Recently, restricted attention has been proposed to
overcome this computational issue (Parmar et al., 2018), but we leave an investigation
of this and its relationship to ConvCNPs to future work.

42 Convolutional Conditional Neural Processes

3.6 Conclusion and Discussion

In this chapter, we introduced ConvCNP, a member of the CNP family that leverages
embedding sets into function space to achieve translation equivariance. The relationship
to the NP family, and representing functions on sets, give rise to novel extensions.

On the topic of Deep Sets, two key issues in the existing theory on learning with
sets (Qi et al., 2017a; Wagstaff et al., 2019; Zaheer et al., 2017b) are (i) the restriction
to fixed-size sets, and (ii) that the dimensionality of the embedding space must be no
less than the cardinality of the embedded sets. Our work implies that by considering
appropriate embeddings into a function space, both issues are alleviated.

Another line of related research focuses on 3D point-cloud modelling (Qi et al.,
2017a,b). While original work focused on permutation invariance (Qi et al., 2017a;
Zaheer et al., 2017b), more recent work has considered translation equivariance as
well (Wu et al., 2019), leading to a model closely resembling ConvDeepSets. The
key differences with our work are the following: (i) Wu et al. (2019) implement ψ as
an MLP with learned weights, resulting in a more flexible parameterization of the
convolutional weights. (ii) Wu et al. (2019) interpret the computations as Monte Carlo
approximations to an underlying continuous convolution, whereas we consider the
problem of function approximation directly on sets. (iii) Wu et al. (2019) only consider
the point-cloud application, whereas our derivation and modelling work considers
general sets.

In the predictive distribution of ConvCNP (Section 3.4), predicted outputs y are
conditionally independent given the context set. Consequently, samples from the
predictive distribution are incoherent – they lack correlations and appear noisy. One
solution is to instead define the predictive distribution in an autoregressive way, like
e.g. PixelCNN++ (Salimans et al., 2017). Although samples are now correlated, the
quality of the samples depends on the order in which the points are sampled. Moreover,
the predicted outputs y are then not consistent under marginalization (Garnelo et al.,
2018b; Kim et al., 2019). Consistency under marginalization is more generally an
issue for neural autoregressive models (Parmar et al., 2018; Salimans et al., 2017),
although consistent variants have been devised (Louizos et al., 2019). To overcome the
consistency issue for ConvCNP, exchangeable neural process models (e.g. Korshunova
et al., 2020; Louizos et al., 2019) may provide an interesting avenue. Another way to
introduce dependencies between outputs y is to employ latent variables as is done in
neural processes as in the LNP (Garnelo et al., 2018b). This has the added benefit of
overcoming the limited Gaussian parametrization of the predictive distribution used
by both CNPs and ConvCNPs which cannot model multi-modality, heavy-tailedness,

3.6 Conclusion and Discussion 43

or asymmetry. However, such an approach only achieves conditional consistency:
given a context set, the predicted outputs y will be dependent and consistent under
marginalization, but this does not lead to a consistent joint model that also includes
the context set itself, previously described as AR-consistency. The next chapter will
propose a method of combining the benefits of translation equivariance with the latent
variable architecture in LNPs to achieve conditional consistency. In fact, the remainder
of this thesis will continue to explore these issues of consistancy, coherent model samples
and more flexible output space parametrizations.

44 Convolutional Conditional Neural Processes

Fig. 3.6 Qualitative evaluation of the ConvCNP(XL). For each dataset, an image is randomly
sampled, the first row shows the given context points while the second is the mean of the
estimated conditional distribution. From left to right the first seven columns correspond to a
context set with 3, 1%, 5%, 10%, 20%, 30%, 50%, 100% randomly sampled context points.
In the last two columns, the context sets respectively contain all the pixels in the left and
top half of the image. ConvCNPXL is shown for all datasets besides ZSMM, for which we
show the fully translation equivariant ConvCNP.

Chapter 4

Convolutional Latent Neural
Processes

ConvCNPs incorporated translation equivariance into conditional neural processes for
better performance on spatio-temporal and image data. However, as a conditional
neural process, it is only able to produce mean-field predictions poorly suited for
downstream estimation and real-world applications, such as those in climate science,
that require well-calibrated joint uncertainties (Markou et al., 2022). Building off of
ConvCNPs introduced in Chapter 3, in this chapter we will introduce a latent variable
version of the ConvCNP to tackle this weaknesses of the ConvCNP. We introduce
Convolutional Latent Neural Process, a member of the neural process family that is
translation equivarient like the ConvCNP but is able to produce coherent function
samples model epistemic uncertainty unlike its conditional counterpart, the ConvCNP.

4.1 Introduction

Incorporating appropriate inductive biases into machine learning models is key to
achieving good generalization performance. Consider, for example, predicting rainfall
at an unseen test location from rainfall measurements nearby. As we saw in Chapter 3, a
powerful inductive bias for this task is stationarity: the assumption that the generative
process governing rainfall is spatially homogeneous. Given only observations in a limited
part of the space, stationarity allows the model to extrapolate to yet unobserved regions.
And closely related to stationarity is translation equivariance (TE). TE formalizes
the intuitive idea that if observations are shifted in time or space, then the resulting
predictions should be shifted by the same amount. In Chapter 3, we were able to
incorporate translation equivariance into CNPs with the development of the ConvCNP

46 Convolutional Latent Neural Processes

model and we saw that, when stationarity or TE is appropriate, like in time-series
(Roberts et al., 2013), images (LeCun et al., 1998), and spatio-temporal modelling
(Cressie, 1990; Delhomme, 1978), incorporating them into CNPs yields significant
benefits. However, CNPs suffer from drawbacks that inhibit their use in scenarios where
other SP models, e.g. Gaussian processes (GPs; (Rasmussen and Williams, 2006)), often
succeed. For example, both CNPs and ConvCNPs are limited to factorized, parametric
predictive distributions. This makes them unsuitable for producing coherent predictive
function samples or modelling complicated likelihoods. Latent Neural Processes (LNPs;
(Garnelo et al., 2018b)) (see Section 2.2.4), a latent variable extension of CNPs, were
introduced to enable richer joint predictive distributions. However, the LNP training
procedure uses variational inference (VI) and amortization, which are known to suffer
from certain drawbacks (Cremer et al., 2018; Turner and Sahani, 2011). Moreover,
existing LNPs did not incorporate TE at the time of publication of the work in this
chapter.

In this chapter, we build upon both ConvCNPs and LNPs to develop convolutional
latent neural processes (ConvLNPs). ConvLNPs are a map from data sets to predictive
SPs that is both TE and capable of expressing complex joint distributions. As training
ConvLNPs with VI poses technical and practical issues, we instead propose a simplified
maximum-likelihood objective, which directly targets the predictive SP. We show that
ConvLNPs produce compelling samples and generalize effectively, making them suitable
for a broad range of spatio-temporal prediction tasks.

The work in this chapter is based on the publication ‘Meta-Learning Stationary
Stochastic Process Prediction with Convolutional Neural Processes’ presented in the
Conference on Neural Information Processing Systems, 2020 (Foong et al., 2020).
The research was conducted with the lead authors Andrew Y. K. Foong, Wessel P.
Bruinsma, and Jonathan Gordon, collaborator Yann Dubois as well as our advisor
Richard E. Turner. I developed the model and architecture with Jonathan Gordon,
and contributed to the writing of software1, experiments, and the of the original paper
and appendix. The bulk of the work on this paper was done by the lead authors but
all ideas and work in the paper was a collaborative effort by our entire team.

The key contributions of this chapter are:

(i) We introduce ConvLNPs, extending ConvCNPs to model rich joint predictive
distributions.

1Code to reproduce the 1D regression experiments can be found at https://github.com/wesselb/
NeuralProcesses.jl, and code to implement the image-completion experiments can be found at
https://github.com/YannDubs/Neural-Process-Family.

https://github.com/wesselb/NeuralProcesses.jl
https://github.com/wesselb/NeuralProcesses.jl
https://github.com/YannDubs/Neural-Process-Family

4.2 Notation and Background 47

(ii) We propose a simplified training procedure, discarding VI in favor of an approxi-
mate maximum-likelihood procedure, which improves performance for ConvLNPs.

(iii) We demonstrate the usefulness of ConvLNPs on toy time-series experiments,
image-based sampling and extrapolation, and real-world environmental data sets.

4.2 Notation and Background

For convenience, we review some of the background concepts relevant for this chapter.
Let X = Rdin ,Y = R denote the input and output spaces, and let (x, y) be an input-
output pair. Let S be the collection of all finite data sets, with D(c), D(t) ∈ S a context
and target set respectively. In this chapter, we will mainly be concerned with with the
regression task of predicting the target set from the context set as in previous chapters.
Let x(c), y(c) be the inputs and corresponding outputs of D(c), with x(t), y(t) defined
analogously. We denote a single task as ξ = (D(c), D(t)) = ((x(c),y(c)), (x(t),y(t))). Let
P(X) denote the collection of stochastic processes on X , and let Cb(X) denote the
collection of continuous, bounded functions on X .

We are concerned with meta-learning the map from context sets D(c) to the ground-
truth predictive distribution called the prediction map (see Definition 1) πP : D(c) 7→
p(y(t)|x(t), D(c)) = p(y(t),y(c)|x(t),x(c))/p(y(c)|x(c)). The general prediction problem
may then be viewed as learning to approximate πP .

4.2.1 Translation Equivariance and Stationarity

The prediction map πP possesses two important symmetries. First, πP is invariant
to permutations of D(c) (Gordon et al., 2020; Zaheer et al., 2017b). Second, if the
ground truth process P is stationary, then πP is translation equivariant: whenever
an input to the map is translated, its output is translated by the same amount (see
Section B.2 for formal definitions and proofs). This simple statement highlights the
intimate relationship between stationarity and TE. Moreover, it suggests that models
for the prediction map should also be TE and permutation invariant. As such models
are a small subset of the space of all models, building in these properties can greatly
improve data efficiency and generalization for stationary SP prediction. In Section 4.3,
we extend the TE maps of the ConvCNP to construct a rich class of models which
incorporate these inductive biases.

48 Convolutional Latent Neural Processes

4.2.2 Convolutional Conditional Neural Processes

The ConvCNP from Chapter 3 is an important building block in the model proposed in
this chapter. ConvCNPs can be viewed from the perspective of SP prediction, revealing
their key limitations. Recall that the ConvCNP models the predictive distribution over
target outputs as:

pϕ(y(t)|y(t), D(c)) = ∏
(x(t),y(t))∈D(t)N (y(t);µ(x(t), D(c)), σ2(x(t), D(c))). (4.1)

The mean µ(· , D(c)) and variance σ2(· , D(c)) are parametrized by ConvDeepSets: a
flexible parametrization for TE maps from S to Cb(X). As we saw in Section 3.3.1,
ConvDeepSets introduce the idea of functional representations: whereas the standard
DeepSets framework embeds data sets into a finite-dimensional vector space (Zaheer
et al., 2017b), a ConvDeepSet embeds data sets in an infinite-dimensional function
space.

We observe that Equation (4.1) defines a map from context sets D(c) to predictive
SPs. Specifically, let PN(X) ⊂ P(X) denote the set of noise GPs: GPs on X whose
covariance is given by Cov(x,x′) = σ2(x)δ[x − x′], where σ2 ∈ Cb(X) and δ[0] = 1
with δ[·] = 0 otherwise. Then the ConvCNP is a map ConvCNP : S → PN(X) with
Equation (4.1) defining its finite-dimensional distributions. Since ConvDeepSets are
TE, and the means and variances of ConvCNPs are ConvDeepSets, it follows that
ConvCNPs are also TE as maps from S → PN(X). Unfortunately, processes in PN(X)
possess two key limitations discussed in Section 3.6. First, it is impossible to obtain
coherent function samples as each point of the function is generated independently.
Second, Gaussian distributions cannot model multi-modality, heavy-tailedness, or
asymmetry.

4.3 The Convolutional Latent Neural Process

We now present the ConvLNP, which addresses the above weaknesses of ConvCNPs. We
introduce the parametrization (Section 4.3.1) and a maximum-likelihood meta-training
procedure (Section 4.3.2).

4.3 The Convolutional Latent Neural Process 49

Fig. 4.1 ConvLNP encoder-decoder architecture. The encoder is a ConvCNP which takes
the context set as input (left panel) and outputs a single sample of z (center panel). The
decoder takes this as input and outputs a predictive sample (right panel blue; two other
samples shown in grey).

4.3.1 Parametrizing Translation Equivariant Maps to Stochas-
tic Processes Using ConvLNPs

The convolutional latent neural process (ConvLNP) extends the ConvCNP by parametriz-
ing a map to predictive SPs more expressive than PN(X), allowing for coherent sampling
and non-Gaussian predictives. It achieves this by passing the output of a ConvCNP
through a non-linear, TE map between function spaces. Specifically, the ConvLNP uses
an encoder–decoder architecture, where the encoder E: S → PN(X) is a ConvCNP
and the decoder d : RX → RX is TE (here RX denotes the set of all functions from X
to R). Conditioned on D(c), ConvLNP samples can be obtained by sampling a function
z ∼ ConvCNP(D(c)) and then computing f = d(z). This is illustrated in Figure 4.1.
Importantly, d takes functions to functions and does not necessarily act point-wise:
letting f(x) depend on the value of z at multiple locations is crucial for inducing
dependencies in the predictive. This sampling procedure induces a map between SPs,
D: PN(X)→ P(X) (see Section B.3). Putting these together, with explicit parameter
dependence in E and D, the ConvLNP is constructed as

ConvLNPθ,ϕ = Dθ ◦ Eϕ, Eϕ = ConvCNPϕ, Dθ = (dθ)∗,

where (dθ)∗ is the pushforward2 under dθ. In Section B.3, we prove that ConvLNPθ,ϕ
is indeed TE.

In practice, we cannot compute samples of noise GPs (PN) because they comprise
uncountably many independent random variables. Instead, we consider a discrete
version of the model, which enables computation. Following Gordon et al. (2020), we
discretize the domain of z on a grid (xi)Ki=1, with z := (z(xi))Ki=1. As a consequence, the

2i.e., (dθ)∗(Eϕ) is the measure induced on RX by sampling a function from Eϕ and passing it
through dθ.

50 Convolutional Latent Neural Processes

Fig. 4.2 Forward pass of a ConvLNP. Steps (1)-(4) depict sampling from the encoder Eϕ,
which is a ConvCNP. This involves: (1) computing a functional representation of the
context set, with separate ‘density’ and ‘data’ channels (described in Algorithm 2), (2)
discretizing the representation, (3) passing the representation through a CNN, which outputs
the parameters of independent Gaussian distributions spaced on a grid, and (4) sampling
from these distributions. However, the samples at each grid point are independent of each
other, hence in (5) the samples are passed through another CNN, the decoder, to induce
dependencies, and then are smoothed out.

4.3 The Convolutional Latent Neural Process 51

model can only be equivariant up to shifts on this discrete grid. With this discretization,
sampling z ∼ ConvCNPϕ(D(c)) amounts to sampling independent Gaussian random
variables, and dθ is implemented by passing z through a CNN. The forward pass of a
trained ConvLNP is illustrated in Figure 4.2. Note that CNNs are not always entirely
TE due to the zero padding that occurs at each layer. In practice, we find that this is
not an issue.3 Following Kim et al. (2019), we define the model likelihood by adding
heteroskedastic Gaussian observation noise σ2

y(x, z) to the predictive function draws
f = dθ(z) ∈ RX :

pϕ,θ(y(t)|x(t), D(c)) = Ez∼Eϕ(D(c))

[∏
(x(t),y(t))∈D(t) N

(
y(t) | dθ(z)(x(t)), σ2

y(x(t), z)
)]
.

(4.2)
Although the product in the expectation factorizes, pϕ,θ(y(t)|x(t), D(c)) does not: z
induces dependencies in the predictive, in contrast to Equation (4.1). Below we describe
the details for the off-the-grid and on-the-grid ConvLNPs.

Off-the-grid ConvLNP. As described above, the encoder Eϕ is defined by a
ConvCNP, which provides a distribution over latent functions z. In practice, we
consider the discretized version, where we denote the grid of discretization locations as
(ti)Ki=1, with ti ∈ X . Let pϕ(zi|ti, D(c)) denote the density of the latent function at the
ith position, i.e. at zi = z(ti). Then in order to sample z ∼ Eϕ we specify the density
of the entire discretized latent function z as:

pϕ(z|D(c)) =
K∏
i=1

pϕ(zi|ti, D(c)) =
K∏
i=1
N (zi;µ(ti, D(c)), σ2(ti, D(c))), (4.3)

where µ and σ2 are parametrized by ConvDeepSets.
We express the ConvDeepSets as the composition of two functions Φ = ρ ◦ E. E

maps a data set D to its functional representation via

E(D) =
∑

(x,y)∈D
ϕ(y)ψ(· − x).

As with the ConvCNPs parametrization in Chapter 3, we set ϕ(y) = [1, y]T ∈ R2, and
ψ to be a radial basis function. E(D) is itself discretized by evaluating it on a grid
(which for simplicity we can also take to be (ti)Ki=1).

Next, ρ maps the discretized E(D) to a continuous function, which we denote
f = ρ(E(D)). E is itself implemented in two stages. First a deep CNN maps the
discretized E(D) to a discretized output. Second, this discrete output is mapped to

3See Section A.4.6 for a discussion.

52 Convolutional Latent Neural Processes

a continuous function by using the CNN outputs as weights for evenly-spaced basis
functions (again employing radial basis functions), which we denote by ψρ.

Whenever models output standard deviations, we enforce positivity via a function
(e.g. the soft-plus function), which we denote pos(·). Pseudo-code for a forward pass
through an off-the-grid ConvCNP is provided in Algorithm 2. Note the forward pass
involves the computation of a density channel h(0), whose role intuitively is to allow
the model to know where it has observed datapoints.

On-the-grid ConvLNP. Next, we describe the ConvLNP for on-the-grid data,
which is used in our image and environmental experiments. This version is simpler
to implement in practice, and is applicable whenever the input data is confined to
a regular grid. As in Chapter 3 we choose the discretization (ti)Ki=1 to be the pixel
locations.

Let I ∈ RH×W×C be an image of dimensions H,W,C (height, width, and channels,
respectively). We define a mask Mc, which is such that [Mc]i,j = 1 if pixel location
(i, j) is in the context set, and 0 otherwise. Masking an image is then achieved via
element-wise multiplication, denoted Mc ⊙ I. This allows us to flexibly define context
and target sets for an image (target sets are typically considered as the complete image,
so the masks Mc are simply binary-valued tensors with the same dimensions as the
image). In this setting, we implement ϕ, by selecting the context points, and prepend
the context mask: ϕ = [Mc,Zc]⊤. We then implement E by a simple convolutional
layer, which we denote convθ to emphasize that we use a standard 2d convolutional
layer. Full pseudo-code for the on-the-grid ConvCNP is provided in Algorithm 3.

The ConvLNP can be implemented very simply by passing samples from the
ConvCNP through an additional CNN decoder, which we denote dθ. For an “off-the-
grid” ConvLNP, similarly to the ConvCNP, we must map the output of a standard
CNN back to functions on a continuous domain X . This can be achieved via an RBF
mapping, similar to the off-the-grid ConvCNP, e.g. Algorithm 3 lines 5–6. Pseudo-code
for off- and on-the-grid ConvLNPs are provided in Algorithms 4 and 5, respectively.
Note that for the ConvLNP, the discretization of the latent function z is typically on a
pre-specified grid, and therefore lines 5 and 6 of Algorithm 2 are unnecessary when
calling the ConvCNP (Algorithm 4, line 1).

4.3 The Convolutional Latent Neural Process 53

Algorithm 4 Forward pass through ConvLNP (off-the-grid)
Require: d = (CNN, ψd), Eϕ (off-the-grid ConvCNP), and number of samples L
Require: context (x(c), y(c))Nn=1, target (x(t))Mm=1

1: µz,σz ← Eϕ(D(c))
2: for ℓ = 1, . . . , L do
3: zℓ ∼ N (z;µz,σ2

z)
4: (fµ(ti), fσ(ti))Ki=1 ← CNN(zℓ)
5: µm,ℓ ←

∑T
i=1 fµ(ti)ψd(x(t)

m − ti)
6: σm,ℓ ← pos (fσ(ti))
7: end for
8: return (µ,σ)

Algorithm 5 Forward pass through ConvLNP (on-the-grid)
Require: d = CNN, Eϕ (on-the-grid ConvCNP), and number of samples L
Require: image I, context mask Mc, and target mask Mt

1: µz,σz ← Eϕ(I,Mc)
2: for ℓ = 1, . . . , L do
3: zℓ ∼ N (z;µz,σ2

z)
4: (fµ(ti), fσ(ti))Ki=1 ← CNN(zℓ)
5: µ← f

(1:C)
t

6: σ ← pos
(
f

(C+1:2C)
t

)
7: end for
8: return (µ,σ)

4.3.2 Maximum Likelihood Learning of ConvLNPs

In this section we propose a maximum-likelihood training procedure for ConvLNPs.
Let the ground truth task distribution be p(ξ) = p(D(c), D(t)). Let

LML(θ,ϕ; ξ) := log pϕ,θ(y(t)|x(t), D(c)) (4.4)

be the single-task likelihood, and let

LML(θ,ϕ) := Ep(ξ)[log pϕ,θ(y(t)|x(t), D(c))] (4.5)

be the task-averaged likelihood. The following proposition shows that maximizing LML

recovers the prediction map πP in a suitable limit:
Assume tasks ξ = (D(c), D(t)) are generated as follows: first, some finite number of

input locations x(t),x(c) are sampled. Assume that Pr(|x(t)| = n) > 0 for all n ∈ Z≥0,
where |x(c)| denotes the number of datapoints in x(t), and assume the same is true of

54 Convolutional Latent Neural Processes

Pr(|x(c)| = n). Further assume that for each n > 0, the distribution of x given |x| = n

has a continuous density with support over all of Rn×din . Next, we sample y(t),y(c)

from the finite marginal of the ground truth stochastic process P , which has density
p(y(t),y(c)|x(t),x(c)). Finally, we set (D(c), D(t)) := ((x(t),y(t)), (x(c),y(c))).
Proposition 1. Let Ψ : S → P(X) be any map from data sets to stochastic processes,
and let LML(Ψ) := Ep(ξ)[log pΨ(y(t)|x(t), D(c))], where the density pΨ is that of Ψ(D(c))
evaluated at x(t). Then Ψ globally maximises LML if and only if Ψ = πP , the prediction
map.

Proof. We have:

LML(Ψ) = Ep(D(c),x(t),y)

[
log pΨ(y(t)|x(t), D(c))

]
(4.6)

= Ep(D(c),x(t))

[
Ep(y(t)|x(t),D(c))

[
log pΨ(y(t)|x(t), D(c))

]]
(4.7)

= Ep(D(c),x(t))

[
Ep(y(t)|x(t),D(c))

[
log pΨ(y(t)|x(t), D(c))

p(y(t)|x(t), D(c)) + log p(y(t)|x(t), D(c))
]]

(4.8)

= Ep(D(c),x(t))

[
Ep(y(t)|x(t),D(c))

[
log pΨ(y(t)|x(t), D(c))

p(y(t)|x(t), D(c))

]]
+ Ep(D(c),x(t))

[
Ep(y(t)|x(t),D(c))

[
log p(y(t)|x(t), D(c))

]]
(4.9)

= −Ep(D(c),x(t))

[
KL

(
p(y(t)|x(t), D(c))

∥∥∥pΨ(y(t)|x(t), D(c))
)]

+ constant, (4.10)

where the additive constant is constant with respect to Ψ. First note that the KL-
divergence is non-negative, and that the prediction map sends all the KL-divergences
to zero, globally optimising L(Ψ). Furthermore, the KL-divergence is equal to zero if
and only if the two distributions are equal, and this must hold for (almost) all x(t), D(c).
For, if this were not the case, the KL-divergence would contribute a non-zero amount
to the expectation in Equation (4.10).

Note that log p is a strictly proper scoring rule (Gneiting and Raftery, 2007) so it
is maximized exactly when

pΨ(·|x(t), D(c)) = πP (D(c))(·|x(t)),

as shown. Strictly speaking, this argument only shows that the finite marginals of
the prediction map and Ψ must be equal for almost all (D(c),x(t)) with respect to
p(D(c),x(t)). Since the task generation procedure outlined in this section assumes a

4.4 The Latent Variable Interpretation of ConvLNPs 55

finite probability of generating any finite-sized context and target set, this is not very
restrictive. However, in practice we often limit the maximum size of the sampled data
sets, and also their range in X space. Hence we can only expect the model to learn
reasonable predictions within the ranges seen during train time.

In practice, we do not have infinite flexibility in our model or infinite data to compute
expectations over p(ξ), but Proposition 1 shows that maximum-likelihood training is
sensible with an expressive model and sufficient data. Letting D = {ξn}Ntasks

n=1 be a meta-
training set, we can train a ConvLNP by stochastic gradient maximization of LML with
tasks sampled from D. Unfortunately, for non-linear decoders, log pϕ,θ(y(t)|x(t), D(c))
is intractable due to the expectation over z (Equation (4.2)). For a given task ξ,
we instead optimize the following Monte Carlo estimate of LML(θ,ϕ; ξ), which is
conservatively biased, consistent, and monotonically increasing in L (in expectation)
(Burda et al., 2015):

L̂ML(θ,ϕ; ξ) := log
[

1
L

∑L
ℓ=1 exp

(∑
(x(t),y(t))∈D(t) log pθ(y(t)|x(t), zℓ)

)]
; zℓ ∼ Eϕ(D(c)).

(4.11)
One drawback of this objective is that single sample estimators are not useful, as they
drive z to be deterministic.

4.4 The Latent Variable Interpretation of ConvL-
NPs

We now describe an alternative approach to training the ConvLNP via variational
lower bound maximization. This serves the dual purpose of relating ConvLNPs to the
NP family, and contrasting the existing NP framework with our simplified, maximum-
likelihood approach from Section 4.3.2.

4.4.1 A Variational Lower Bound Approach to ConvLNPs

In this section we review the VI objective for the LNP discussed in Section 2.2.4.
Garnelo et al. (2018b) propose viewing Neural Processes as performing approximate
Bayesian inference and learning in the following latent variable model, illustrated in
Figure 2.1:

z ∼ pθ(z); y(x) = fθ(x; z); pθ(y(t)|x(t), z) = ∏
(x(t),y(t))∈D(t) N

(
y(t); fθ(x(t); z), σ2

y

)
.

(4.12)

56 Convolutional Latent Neural Processes

To train the model, they propose using amortized VI (Kingma and Welling, 2014;
Rezende and Mohamed, 2015). This approach involves introducing a variational
approximation qϕ which maps data sets S ∈ S to distributions over z, and maximizing
a lower bound (ELBO) on log pθ(y(c)|x(t), D(c)). We can define a similar procedure
for ConvLNPs. For ConvLNPs, z is a latent function, qϕ is a map from data sets to
SPs, and fθ is a map between function spaces. A natural choice is to use a ConvCNP
and CNN for qϕ and fθ, respectively. This results in the same parameterization as
in Section 4.3, but a different modelling interpretation and meta-training objective.
Given a task ξ = (D(c), D(t)), the ELBO for this model is:

Ez∼qϕ(z|D(c)∪D(t))

[
log pθ(y(c)|x(c), z)

]
−KL(qϕ(z|D(c) ∪D(t))∥ p(z|D(c))).

As p(z|D(c)) is intractable to compute, Garnelo et al. (2018b) instead propose the
following objective:

LLNP(θ,ϕ; ξ) :=
Ez∼qϕ(z|D(c)∪D(t))

[
log pθ(y(c)|x(c), z)

]
−KL(qϕ(z|D(c) ∪D(t))∥qϕ(z|D(c))), (4.13)

where the intractable term p(z|D(c)) has been substituted with our variational approx-
imation qϕ(z|D(c)). Due to this substitution, LLNP is no longer a valid ELBO for the
original model (Equation (4.12)). Rather, if we define separate models for each context
set D(c), and define the conditional prior for each model as p(z|D(c)) := qϕ(z|D(c)),
then LLNP may be thought of as performing VI in this collection of models. However,
there is no guarantee that these conditional priors are consistent in the sense that they
correspond to a single Bayesian model as in Equation (4.12).

For the non-discretized ConvLNP, Equation (4.13) involves KL divergences between
SPs which cannot be computed directly and must be treated carefully (Matthews et al.,
2016; Sun et al., 2019). On the other hand, for the discretized ConvLNP, the KL
divergences can be computed, but grow in magnitude as the discretization becomes
finer, and it is not clear that the KL divergence between SPs is recovered in the limit.
This raises practical issues for the use of Equation (4.13) with the ConvLNP, as the
balance between the two terms depends on the choice of discretization.

4.4 The Latent Variable Interpretation of ConvLNPs 57

4.4.2 Maximum-Likelihood vs Variational Lower Bound Max-
imization for Training NPs

We argue that the VI interpretation is unnecessary when focusing on predictive
performance, and particularly detrimental for ConvLNPs, where z has many elements.
Let D := D(c) ∪D(c), and let Z =

∫
pθ(y(t)|x(t), z)qϕ(z|D(c)) dz. Note that:

LLNP(θ,ϕ; ξ) := Eqϕ(z|D)[log pθ(y(t)|x(t), z)]−KL(qϕ(z|D)∥qϕ(z|D(c))) (4.14)
= Eqϕ(z|D)[log pθ(y(t)|x(t), z) + log qϕ(z|D(c))− log qϕ(z|D)] (4.15)

= Eqϕ(z|D)

[
logZ + log pθ(y

(t)|x(t), z)qϕ(z|D(c))
Z

− log qϕ(z|D)
]

(4.16)

= logZ −KL
(
qϕ(z|D)

∥∥∥∥ 1
Z
pθ(y(t)|x(t), z)q(z|D(c))

)
. (4.17)

If we identify the approximate posterior qϕ with the encoder of the maximum-likelihood
ConvLNP, (which in the maximum-likelihood framework does not have an approximate
inference interpretation), then logZ = LML(θ,ϕ; ξ):

LLNP(θ,ϕ; ξ) = LML(θ,ϕ; ξ)−KL
(
qϕ(z|D(c) ∪D(t))

∥∥∥pθ(D(t)|z)qϕ(z|D(c))/Z
)
,

(4.18)

we see that LLNP is equal to LML up to an additional KL term. This KL term encourages
consistency among the qϕ(z|D) in the sense that Bayes’ theorem is respected if the
target set is subsumed into the context set. In the infinite capacity/data limit, LLNP

is globally maximized if the ConvLNP recovers (i) the prediction map πP for y(t)

and (ii) exact inference for z. This follows from (i) Proposition 1, since πP globally
optimizes LML; and (ii) that exact inference for z is Bayes-consistent, sending the KL
term to zero. In most applications, only the distribution over y(t) is of interest. Given
only finite capacity/data, it can be advantageous to not expend capacity in enforcing
Bayes-consistency for z, which suggests it could be beneficial to use LML over LLNP.
Further, LML has the advantage of being easy to specify for any map parameterizing a
predictive process, posing no conceptual issues for the ConvLNP. In Section 4.5 we find
that LML significantly outperforms LLNP for ConvLNPs, and often also for ALNPs.

58 Convolutional Latent Neural Processes

Fig. 4.3 Interpolation performance (within training range) for context set sizes uniformly
sampled from {0, . . . , 50} of the ConvLNP and ALNP on Matérn–5

2 samples. The models are
trained with LML and LLNP for various number of samples L. Models trained with LML are
evaluated with LML, while models trained with LLNP are evaluated with LML. At evaluation,
all bounds are estimated using 2,048 samples.

4.4.3 Effect of Number of Samples Used During Training

Figure 4.3 shows the effect of the number of samples L in the training objectives on
the performance of the ConvLNP and ALNP. Observe that the performance of LML

reliably increases with the number of samples L and that LML outperforms LLNP. The
performance for LLNP does not appear to increase with the number of samples L and
appears more noisy than LML. Note that the models used for Figure 4.3 were trained
with homoskedastic observation noise. This is achieved by pooling fσ over the time
dimension.

In our experiments in Section 4.5, we set L between 16 and 32.

4.4.4 Effect of Number of Samples Used for Evaluation

As the true log-likelihoods of NP-based models are intractable, quantitative evaluation
and comparison of models is challenging. Instead, we compare models by using an
estimate of the log-likelihood. A natural candidate is LML. However, unless large L is
used, LML is conservative and tends to significantly underestimate the log-likelihood.
One way to improve the estimate of LML is through importance weighting (IW) (Le

4.4 The Latent Variable Interpretation of ConvLNPs 59

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

ConvNP (LML)
ConvNP (LLNP + IW)
ANP (LML)
ANP (LLNP + IW)
ANP (LLNP)

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384
Number of samples L in evaluation loss

15
10

5

ConvNP (LLNP)

(a) Matérn– 5
2

(b) Weakly periodic kernel

Fig. 4.4 Log-likelihood bounds achieved by various combination of models and training objec-
tives when evaluated with LML and LIW for various numbers of samples L. Color indicates
model. Solid lines correspond to models trained and evaluated with LML. Dashed lines
correspond to models trained with LLNP and evaluated with LIW. Dotted lines correspond
to models trained with LLNP and evaluated with LLNP.

60 Convolutional Latent Neural Processes

et al., 2018; Wu et al., 2016). The encoder Eϕ(D) can be used as a proposal distribution:

L̂IW(θ,ϕ; ξ) := log
 1
L

L∑
ℓ=1

exp
logw(zℓ) +

∑
(x(t),y(t))∈D(t)

log pθ(y(t)|x(t), zℓ)
 ,

(4.19)
where zℓ ∼ Eϕ(D), and where the importance weights are given by logw(zℓ) :=
log qϕ(z|D(c))− log qϕ(z|D). Here qϕ(z|D) is the density of the encoder distribution.
We find that training models with LML results in encoders that are ill-suited as proposal
distributions, so we only use LIW to evaluate models trained with LLNP.

Figure 4.4 demonstrates the effect of the number of samples L used to estimate
the evaluation objective for the ConvLNP and ALNP trained with LML and LLNP.
The models used to generate Figure 4.4 are the same models used in Section 4.5.1,
i.e. having heteroskedastic noise. Observe the general trend that the log-likelihood
estimates tend to increase with L, as expected. The ALNP trained with LLNP collapsed
to a conditional ALNP, meaning that the encoder became deterministic; in that case,
LML is exact, which means that larger L and importance weighting will not increase the
estimate. In contrast, the ALNP trained with LML did not collapse, and we see that
there the estimate increases with L. For the ConvLNP trained with LLNP, evaluating
with LIW yields a significant increase, showing that the bound estimated with LIW is
very loose. The models trained with LML tend to be the best performing, although the
ConvLNP trained with LLNP is best for weakly periodic kernel and appears to still be
increasing with L.

In both the main and the supplement, all log-likelihood lower bounds reported are
computed with LML if the model was trained using LML and with LIW if the model
was trained using LLNP.

4.5 Experiments and Results

We evaluate ConvLNPs on a broad range of tasks. Our main questions are: (i) Does
the ConvLNP produce coherent, meaningful predictive samples? (ii) Can it lever-
age translation equivariance to outperform baseline methods within and beyond the
training range (generalization)? (iii) Does it learn expressive non-Gaussian predictive
distributions?

Evaluation and baselines. We use several approaches for evaluating NPs. First,
as in (Garnelo et al., 2018b; Kim et al., 2019), we provide qualitative comparisons of
samples. These allow us to see if the models display meaningful structure, quantify

4.5 Experiments and Results 61

ConvLNP ALNP

M
at

ér
n–

5 2

L
M

L
L

L
N

P

M
at

ér
n–

5 2

L
M

L
L

L
N

P

W
ea

kl
y

P
er

io
di

c

L
M

L
L

L
N

P

Sa
w

to
ot

h

L
M

L
L

L
N

P

Fig. 4.5 Predictions of ConvNPs and ALNPs trained with LML and LLNP, showing inter-
polation and extrapolation within (grey background) and outside (white background) the
training range. Solid blue lines are samples, dashed blue lines are means, and the shaded blue
area is µ± 2σ. Purple dash–dot lines are the ground-truth GP mean and µ± 2σ. ConvNP
handles points outside the training range naturally, whereas this leads to catastrophic failure
for the ALNP. Note ALNP with LLNP tends to collapse to deterministic samples, with all
uncertainty explained with the heteroskedastic noise. In contrast, models trained with LML
show diverse samples that account for much of the uncertainty.

uncertainty, and are able to generalize spatially. Second, NPs lack closed-form likeli-
hoods, so we evaluate lower bounds on their predictive log-likelihoods via importance
sampling (Le et al., 2018). As these bounds can be quite loose (Section 4.4.4), they are
primarily useful to show when NPs outperform baselines with exact likelihoods, such
as GPs and ConvCNPs. Finally, in Section 4.5.3 we consider Bayesian optimization to
evaluate the usefulness of ConvLNPs for downstream tasks. In Sections 4.5.1 and 4.5.2,
we compare against the Attentive LNP (ALNP; (Kim et al., 2019)), which in prior
work is trained with LLNP. The ALNP architectures used here are comparable to those
in Kim et al. (2019), and have a parameter count comparable to or greater than the
ConvLNP. Full details provided in Section B.4.

62 Convolutional Latent Neural Processes

within training range beyond training range

Matérn- 5
2 Weakly Per. Sawtooth Matérn- 5

2 Weakly Per. Sawtooth
GP (full) 1.22 ± 6e –3 –0.06 ± 5e –3 N/A 1.22 ± 6e –3 –0.06 ± 5e –3 N/A
ConvLNP∗ (LML) –0.58 ± 0.01 –1.02 ± 6e –3 2.30 ± 0.01 –0.58 ± 0.01 –1.03 ± 6e –3 2.29 ± 0.02
ALNP∗ (LML) –0.73 ± 0.01 –1.14 ± 6e –3 0.09 ± 3e –3 –1.39 ± 7e –3 –1.35 ± 4e –3 –0.17 ± 1e –3
ALNP∗ (LLNP) –0.96 ± 0.01 –1.37 ± 6e –3 0.20 ± 9e –3 –1.48 ± 4e –3 –1.66 ± 0.01 –0.30 ± 4e –3
GP (diag) –0.84 ± 9e –3 –1.17 ± 5e –3 N/A –0.84 ± 9e –3 –1.17 ± 5e –3 N/A
ConvCNP –0.88 ± 0.01 –1.19 ± 7e –3 1.15 ± 0.04 –0.87 ± 0.01 –1.19 ± 7e –3 1.11 ± 0.04

Table 4.1 Log-likelihoods on 1D regression tasks. Lower bounds marked with asterisk. Highest
non-GP values in bold.

4.5.1 1D Regression

We train on samples from (i) a Matérn-5
2 GP, (ii) a weakly periodic GP, and (iii) a

non-Gaussian sawtooth process with random shifts and frequency (see Section B.4 for
details). Figure 4.5 shows predictive samples, where during training the models only
observe data within the grey regions (training range). While samples from the ALNP
exhibit unnatural “kinks” and do not resemble the underlying process, the ConvLNP
produces smooth samples for Matérn–5

2 and samples exhibiting meaningful structure for
the weakly periodic and sawtooth processes. The ConvLNP also generalizes gracefully
beyond the training range, whereas ALNP fails catastrophically. The ALNP with LLNP

collapses to deterministic samples, with the epistemic uncertainty explained using the
heteroskedastic noise σ2

y(x, z). This was also noted in Le et al. (2018). This behaviour
is alleviated when training with LML, with much of the predictive uncertainty due to
variations in the sampled functions.

Table 4.1 compares lower bounds on the log-likelihood for ConvLNP with our
proposed LML objective and ALNP with both LML and the standard LLNP objective. We
also show three exact log-likelihoods: (i) the ground-truth GP (full) (ii) the ground-truth
GP with diagonalised predictions (diag), and (iii) ConvCNP. The ConvCNP performs
on par with GP (diag), which is the optimal factorized predictive. The ConvLNP
lower bound is consistently higher than the GP (diag) and ConvCNP log-likelihoods,
demonstrating that its correlated predictives improve predictive performance. Further,
the ConvLNP performs similarly inside and outside its training range, demonstrating
that TE helps generalization; this is in contrast to the ALNP, which fails catastrophically
outside its training range. In Section B.5, we provide a thorough comparison for multiple
models, training objectives, and data sets.

4.5 Experiments and Results 63

MNIST CelebA32 SVHN ZSMM
LML LLNP LML LLNP LML LLNP LML LLNP

ConvLNP 2.11 ± 0.01 0.99 ± 0.42 6.92 ± 0.10 −0.27 ± 0.00 9.89 ± 0.09 0.17 ± 0.00 4.58 ± 0.04 0.14 ± 0.00
ALNP 1.66 ± 0.03 1.64 ± 0.03 5.98 ± 0.08 6.04 ± 0.10 9.18 ± 0.08 8.91 ± 0.06 −10.8 ± 1.99 −6.45 ± 0.99

Table 4.2 Test log-likelihood lower bounds for image completion (5 runs).

(a) ConvLNP (b) ALNP (c) ConvLNP (d) ALNP

Fig. 4.6 Left two plots: predictive samples on zero-shot multi MNIST. Right two plots:
samples and marginal predictives on standard MNIST. We plot the density of the five
marginals that maximize Sarle’s bimodality coefficient Ellison (1987). We use LML for
training. Blue pixels are not in the context set.

4.5.2 Image Completion

We evaluate ConvLNPs on image completion tasks focusing on spatial generalization.
To test this, we consider zero-shot multi MNIST (ZSMM), where we train on single
MNIST digits but test on two MNIST digits on a larger canvas. We randomly translate
the digits during training, so the generative SP is stationary. The black background
on MNIST causes difficulty with heteroskedastic noise, as the models can obtain high
likelihood by predicting the background with high confidence whilst ignoring the digits.
Hence for MNIST and ZSMM we use homoskedastic noise σ2

y(z). Figures 4.6a and 4.6b
show that the ALNP fails to generalize spatially, whereas this is naturally handled by
the ConvLNP.

We also test the ConvLNP’s ability to learn non-Gaussian predictive distributions.
Figure 4.6c shows that the ConvLNP can learn highly multimodal predictives, enabling
the generation of diverse yet coherent samples. A quantitative comparison of models
using log-likelihood lower bounds is provided in Table 4.2, where ConvLNP trained with
LML consistently achieves the highest values. Section B.6 provides details regarding
the data, architectures, and protocols used in our image experiments. In Section B.7,
we provide samples and further quantitative comparisons of models trained on SVHN
(Netzer et al., 2011), MNIST LeCun et al. (1989), and 32× 32 CelebA Netzer et al.
(2011) in a range of scenarios, along with full experimental details.

64 Convolutional Latent Neural Processes

Central (train) West (test) East (test) South (test)

LL ConvLNP 4.47 ± 0.07 4.55 ± 0.08 5.07 ± 0.07 4.65 ± 0.08
GP 3.33 ± 0.06 3.65 ± 0.06 4.07 ± 0.06 3.34 ± 0.06

RMSE (×10−2) ConvLNP 5.72 ± 0.33 5.77 ± 0.37 3.23 ± 0.22 6.92 ± 0.39
GP 6.26 ± 0.30 5.75 ± 0.29 3.10 ± 0.18 7.94 ± 0.44

Table 4.3 Joint predictive log-likelihoods (LL) and RMSEs on ERA5-Land, averaged over
1000 tasks.

4.5.3 Environmental Data

We next consider a real-world data set, ERA5-Land (Service, 2020), containing environ-
mental measurements at a ∼9 km spacing across the globe. We consider predicting daily
precipitation y at position x. We also provide the model with orography (elevation)
and temperature values. We choose a large region of central Europe as our train set,
and use regions east, west and south as held-out test sets. For such tasks, models must
be able to make predictions at locations spanning a range different from the training
set, inhibiting the deployment of NPs not equipped with TE. To sample a task at
train time, we sample a random date between 1981 and 2020, then sample a sub-region
within the train region, which is split into context and target sets. In this section, we
train using LML. See Section B.8 for details.

(a) Ground truth data (b) ConvNP sample 1 (c) ConvNP sample 2 (d) ConvNP sample 3

(e) Context set (f) GP sample 1 (g) GP sample 2 (h) GP sample 3

Fig. 4.7 Predictive samples overlaid on central Europe. Darker colours show higher precipita-
tion. In (e), coloured pixels represent context points. GP samples often take negative values
(lighter than ground truth data, see Section B.8.2 for a discussion), whereas the LNP has
learned to produce non-negative samples which capture the sparsity of precipitation. The
model is trained on subregions roughly the size of the lengthscale of the precipitation process.
More samples in Section B.9.

Prediction. We first evaluate the ConvLNP’s predictive performance, comparing
to a GP trained individually on each task as a baseline. In about 10% of tasks, the
GP obtains a poor likelihood (< 0 nats); we remove these outliers from the evaluation.
The results are shown in Table 4.3. The ConvLNP and GP have comparable RMSEs
except on south, where the ConvLNP outperforms the GP. However, the ConvLNP

4.6 Conclusion and Discussion 65

0 10 20 30 40 50

Central (train)

0.6

0.8

1.0

1.2

1.4

1.6

A
ve

ra
ge

 R
eg

re
t

0 10 20 30 40 50

West (test)

0.6

0.8

1.0

1.2

1.4

1.6

0 10 20 30 40 50

East (test)

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30 40 50

South (test)

0.75

1.00

1.25

1.50

1.75

2.00 GP UCB
GP TS
NP UCB
NP TS
Random

Fig. 4.8 Average regret plotted against number of points queried, averaged over 5000 tasks.

consistently outperforms the GP in log-likelihood, which is expected for the following
reasons: (i) the GP does not share information between tasks and hence is prone to
overfitting on small context sets, resulting in overconfident predictions; and (ii) the
ConvLNP can learn non-Gaussian predictive densities (illustrated in Section B.9).
Figure 4.7 shows samples from the predictive process of a ConvLNP and GP, over the
whole of the train region. This demonstrates spatial extrapolation, as the ConvLNP is
trained only on random subregions.

Bayesian optimization. We demonstrate the ConvLNP in a downstream task
by considering a toy Bayesian optimisation problem, where the goal is to identify the
location with heaviest rainfall on a given day. We also test the ConvLNP’s spatial
generalization, by optimising over larger regions (for central, west, and south) than the
model was trained on. We test both Thompson sampling (TS) (Thompson, 1933) and
upper confidence bounds (UCB) (Auer, 2002) as methods for acquiring points. Note
that TS requires coherent samples. The results are shown in Figure 4.8. On all data
sets, ConvLNP TS and UCB significantly outperform the random baseline by the 50th
iteration; the GP does not reliably outperform random. We hypothesize this is due to
its overconfidence, in line with the results on prediction.

4.6 Conclusion and Discussion

In this chapter, we have introduced the ConvLNP, a TE map from observed data sets
to predictive SPs. Within the NP framework, ConvLNPs bring together three key
considerations.

Expressive joint densities. ConvLNPs extend ConvCNPs to allow for expressive
joint predictive densities. A powerful alternative approach is to combine autoregressive
(AR) models such as PixelCNN++ (Salimans et al., 2017) and the Image Transformer
(Parmar et al., 2018)) with CNPs. A difficulty in introducing AR sampling to CNPs is
the need to specify a sampling ordering, which is in tension with permutation invariance

66 Convolutional Latent Neural Processes

and relates to the discussion on Bayes-consistency (Section 4.4.2). We return to this
idea in Chapter 6.

Translation equivariance. There has been much interest in incorporating equiv-
ariance with respect to symmetry groups into neural networks, e.g. Cohen et al. (2019);
Cohen and Welling (2016); Kondor (2008); Kondor and Trivedi (2018), with a compre-
hensive treatment provided by Bloem-Reddy and Teh (2020). ConvLNPs leverage a
simple relationship between translation equivariance and stationarity to construct a
model particularly well suited to stationary SPs. Similar ideas have been explored for
3D point-cloud modelling (Qi et al., 2017a,b). For example, the models proposed in
Wang et al. (2018); Wu et al. (2019) perform convolutions over continuous domains,
which are both TE and permutation invariant, achieving excellent performance in
point-cloud classification. In contrast with ConvLNPs, point-cloud models (i) are
generally used as classification function approximators, rather than meta or few-shot
learners; (ii) are typically tailored towards point clouds, making heavy use of specific
properties for function design; and (iii) have not considered latent variable or stochastic
generalizations.

Neural Process training procedures. One of the key benefits of CNPs is their
simple maximum-likelihood training procedure (Garnelo et al., 2018a; Gordon et al.,
2020). In contrast, LNPs are usually trained with VI-inspired objectives (Garnelo et al.,
2018b), variants of which are empirically investigated in Le et al. (2018). We propose
an alternative training procedure that discards VI in favor of a (biased) maximum-
likelihood approach that focuses on directly optimizing predictive performance. This
approach has two benefits: (i) it does not require carefully designed inference procedures,
and works “out-of-the-box” for a range of models; and (ii) empirically, we find that it
leads to improved performance for ConvLNPs and, often, for ALNPs.

Despite the improvements in modelling performance, the training of the latent
variable ConvLNP is still more difficult than its conditional counterpart, the ConvCNP,
and predictions require Monte-Carlo sampling to produce uncertainties. In the next
chapter we investigate an approach that maintains the training benefits of CNPs while
allowing for modelling correlations in output space and the production of coherent
samples.

Chapter 5

Gaussian Neural Processes

In this chapter, we continue our investigation into neural process models able to
model joint output dependencies. We introduce a conditional neural process that can
take advantage of the much simpler training procedure of the CNPs, avoiding the
issues associated with the treatment of the latent variable in LNPs. We introduce the
Gaussian neural process which takes inspiration from GPs (Rasmussen and Williams
(2006)) to directly parameterize a Gaussian predictive distribution via mean and kernel
functions. Our model will be much more scalable than standard GPs, however, as the
predictive distribution will be generated via a forward pass through a neural network
and kernel function evaluations making them more suitable for large scale applications.

5.1 Introduction

As discussed in Section 2.2.3, CNPs are severely limited by the fact that they do not
model dependencies in their outputs. To address this issue, follow-up work introduced
latent neural processes models (NPs; Foong et al., 2020; Garnelo et al., 2018b; Kim et al.,
2019), such as the ConvLNP, which use latent variables to model output dependencies.
However, the likelihood for these models is not analytically tractable, so approximations
are required for training (Foong et al., 2020; Le et al., 2018).

My collaborators and I introduced the fully convolutional Gaussian neural process
(FullConvGNP) in our publication “The Gaussian Neural Process” presented in the
Advances in Approximate Bayesian Inference Symposium, 2020 (Bruinsma et al., 2021)1.
The FullConvGNP directly parametrizes the covariance of a Gaussian predictive over
the output variables. In this way the FullConvGNP models statistical dependencies in

1Material from this publication is not included in this thesis.

68 Gaussian Neural Processes

the output, and can be trained by an exact maximum-likelihood objective, without
requiring approximations. However, for D-dimensional data, the architecture of the
FullConvGNP involves 2D-dimensional convolutions, which can be very costly, and,
for D > 1, poorly supported by most Deep Learning libraries.

The work in this chapter is based on the publication ‘Practical Conditional Neu-
ral Processes Via Tractable Dependent Predictions’ presented in the International
Conference on Learning Representations, 2022 (Markou et al., 2021). The research
was conducted with my co-lead author Stratis Markou and collaborators Wessel P.
Bruinsma, and Anna Vaughan as well as our advisor Richard E. Turner. I contributed
and was closely involved with all aspects of the work including the formulation of the
model, software development2, experimentation and writing of the paper. All of of the
work in the paper was a collaborative effort by our entire team.

In this chapter, we introduce the Gaussian neural processes (GNPs), a class of model
which directly parametrises the covariance of a Gaussian predictive process, thereby
circumventing the costly convolutions of the FullConvGNP, and is applicable to higher-
dimensional input data. GNPs have analytic likelihoods making them substantially
easier to train than their latent variable counterparts. In this chapter:

(i) we show that GNPs can be easily applied to multi-output regression, as well as
composed with invertible marginal transformations to model non-Gaussian data;

(ii) we demonstrate that modelling correlations improves performance on experiments
with both Gaussian and non-Gaussian synthetic data, including a downstream
estimation task that mean-field models cannot solve;

(iii) we demonstrate that GNPs outperform their mean-field and latent variable
counterparts on real-world electroencephalogram (EEG) data and climate data;

(iv) in climate modelling, GNPs outperform a standard ensemble of widely used
methods in statistical downscaling, while providing spatially coherent temperature
samples which are necessary for climate impact studies.

5.2 Gaussian Neural Processes

A central problem with CNP predictive distributions is that they are mean-field:
CNPs do not model correlations between y(t)

m and y
(t)
m′ for m ̸= m′. However, many

2Source code available at https://github.com/requeima/kernelcnp

https://github.com/requeima/kernelcnp

5.2 Gaussian Neural Processes 69

EQ

G
ro

u
n

d
 tr

u
th

MAT

−2

0

2
NM

x
′

−2 0 2

x

−2

0

2

WP

x
′

−2 0 2

x
−2 0 2

x
−2 0 2

x

C
on

vG
N

P

Fig. 5.1 The ConvGNP model, introduced in this work, can recover intricate predictive
covariances. Columns show the posterior covariances produced by a ConvGNP, after training
with synthetic data drawn from a Gaussian Process with a different covariance (exponentiated
quadratic, Matern, noisy mixture or weakly periodic), and conditioned on a randomly sampled
dataset.

tasks require modelling dependencies in the output variable. To remedy this, we
consider parameterising a correlated multivariate Gaussian using the following Gaussian
prediction map (see Section 2.1.3):

πθ
(
y(t);x(t),x(c),y(c)

)
= pθ

(
y(t) |x(t),x(c),y(c)

)
= N

(
y(t); m,K

)
(5.1)

where, instead of the expressions for the Bayesian GP posterior, we use neural networks
to parameterise the mean m = m(x(c),y(c),x(t)) and covariance K = K(x(c),y(c),x(t)).
We refer to this class of models as Gaussian neural processes (GNPs). In an ear-
lier work, we introduced the FullConvGNP (Bruinsma et al., 2021) with promising
results. Unfortunately, the FullConvGNP relies on 2D-dimensional convolutions for
parameterising K, applying the sequence of computations

(x(c),y(c)) 1−→ (x̃,h) 2−→ r = PSD(CNN2D(h)) 3−→ Kij = ∑L
ℓ=1 ψ(x(t)

i , x̃ℓ) rℓ ψ(x̃ℓ, x(c)
j)

(5.2)
where 1 maps (x(c), y(c)) to a 2D-dimensional grid h at locations x̃ = (x̃1, . . . , x̃L),
x̃ℓ ∈ R2D, using a ConvDeepSet layer (see Section 3.3), 2 maps h to r through a CNN
with 2D-dimensional convolutions, followed by a PSD map which ensures r is positive-
definite, and 3 aggregates r using an RBF ψ. The CNN at 2 requires expensive
2D-dimensional convolutions, which are challenging to scale to higher dimensions (see
Section 5.4). To overcome this difficulty, we propose parameterising m and K by

mi = f(x(t)
i , r), Kij = k(g(x(t)

i , r), g(x(t)
j , r)) (5.3)

70 Gaussian Neural Processes

where r = r(x(c), y(c)), f and g are neural networks with outputs in R and RDg , and
k is an appropriately chosen positive-definite function. Note that, since k models a
posterior covariance, it cannot be stationary. The special case where Kij = σ2

i Iij is
diagonal corresponds to a mean-field CNP as presented in (Garnelo et al., 2018a) and
Section 2.2.3. Equation (5.3) defines a class of GNPs which, unlike the FullConvGNP,
do not require costly convolutions. GNPs can be readily trained via the log-likelihood

θ∗ = arg maxθ log pθ
(
y(t) |x(t), D(c)

)
, (5.4)

where θ collects all the parameters of the neural networks f , g, and r. In this work, we
consider two methods to parameterise K, which we discuss next.

Linear covariance: The first method we consider is the linear covariance

Kij = g(x(t)
i , r)⊤g(x(t)

j , r) (5.5)

which can be seen as a linear-in-the-parameters model with Dg basis functions and
a unit Gaussian distribution on their weights. This model meta-learns Dg context-
dependent basis functions, which approximate the true distribution of the target, given
the context. By Mercer’s theorem (Rasmussen and Williams, 2006), up to regularity
conditions, every positive-definite function k can be decomposed as

k(z, z′) = ∑∞
d=0 ϕd(z)ϕd(z′) (5.6)

where (ϕd)∞d=1 is a set of orthogonal basis functions. We therefore expect Equation (5.5)
to be able to recover arbitrary (sufficiently regular) GP predictives as Dg grows large.
Further, the linear covariance has the attractive feature that sampling from it scales
linearly with the number of target locations. A drawback is that the finite number of
basis functions may limit its expressivity.

Kvv covariance: An alternative covariance which sidesteps this issue, is the kvv
covariance

Kij = k(g(x(t)
i , r), g(x(t)

j , r))v(x(t)
i , r)v(x(t)

j , r), (5.7)

where k is the Exponentiated Quadratic (EQ) covariance with unit lengthscale and v

is a scalar-output neural network. The v modulate the magnitude of the covariance,
which would otherwise not be able to shrink near the context. Unlike linear, kvv is
not limited by a finite number of basis functions, but the cost of drawing samples from
it scales cubically in the number of target points.

5.3 Non-Gaussian prediction maps 71

Multi-output regression: Extending this approach to the multi-output setting
where y(t)

m ∈ RDy with Dy > 1, can be achieved by learning functions m1, . . . ,mDy and
g1, . . . , gDy for each dimension of the output variable. We can represent covariances
across different target points and different target vector entries, by passing those
features through either the linear or the kvv covariance

Kijab = ga(x(t)
i , r)⊤gb(x(t)

j , r), (5.8)
Kijab = k(ga(x(t)

i , r), gb(x(t)
j , r))va(x(t)

i , r)vb(x(t)
j , r), (5.9)

where Kijab denotes the covariance between entry a of y(t)
i and entry b of y(t)

j .
Neural architectures: This discussion leaves room for choosing f , g, and r,

producing different models belonging to the GNP family, of which the FullConvGNP is
also a member. For example, we may choose these to be DeepSets, attentive Deepsets
or CNNs, giving rise to Gaussian neural processes (GNPs), attentive GNPs (AGNPs)
or convolutional GNPs (ConvGNPs) respectively. Particularly, in the ConvGNP, the
feature function g takes the form

(x(c), y(c)) 1−→ (x̃,h) 2−→ r = CNND(h) 3−→ g(x(t)
i , r) = ∑L

ℓ=1 ψ(x(t)
i , xr,ℓ) rℓ, (5.10)

where, crucially, h are values on a D-dimensional grid at x̃ = (x̃1, . . . , x̃L), x̃ℓ ∈ RD, and
2 uses D-dimensional rather than a 2D-dimensional CNN. This renders the ConvGNP
much cheaper than the FullConvGNP in both compute and memory, while retaining
translation equivariance (see Section C.1.1 for proof), making the former a scalable
alternative to the latter.

5.3 Non-Gaussian prediction maps

For many tasks joint-Gaussian models are sufficient. However, many tasks require
non-Gaussian marginal distributions instead, for example because of non-negative or
heavy-tailed variables.

Gaussian Copula Neural Processes: To address this issue, we draw inspiration
from copula models (Elidan, 2013). Copulae use a dependent base distribution to
model correlations, and adjust its marginals using invertible transformations to better
approximate the data at hand. Wilson and Ghahramani (2010) and Jaimungal and
Ng (2009) have extended copulae to the stochastic process setting, by using a GP as a
base measure, and transforming its marginals appropriately. Adapting the approach of

72 Gaussian Neural Processes

Jaimungal and Ng, we consider the following transformation to the output of a GNP

y(t) = Φ−1
M (u(t),ψ), where u(t) = ΦG(v(t)) and p(v(t)) = πG

(
v(t);x(t),y(c),x(c)

)
.

(5.11)
where ΦG is the CDF of the standard Gaussian, Φ−1

M is the inverse CDF of a chosen
distribution with parameters ψ = ψ(x(t),x(c),y(c)), and πG is a Gaussian prediction
map. We refer to models of this form as Gaussian copula neural processes (GCNPs).
The log-likelihood of this model can be computed exactly using the change of variables
formula (Kobyzev et al., 2020). Since the transformation in Equation (5.11) is dimension-
wise, the resulting Jacobian is diagonal, and the log-likelihood takes the form

log π
(
y(t); x(c),y(c),x(t)

)
= log πG(v(t); x(c),y(c),x(t)) +∑M

m=1 log
∣∣∣Θ′(y(t)

m)
∣∣∣ , (5.12)

where Θ(·) = Φ−1
G (ΦM(·,ψ)),v(t) = Θ(y(t)). Generally, Θ can be any arbitrary

invertible map such as a Normalising Flow (NF). However, requiring marginalisation
consistency places limitations on the form of Θ. While point-wise NFs are consistent
under marginalisations, it is unclear if non-marginal NFs can be used in a consistent
model (Section C.1.2). Last, while fully learnable marginal NFs (Durkan et al., 2019)
can be used, the Θ presented here was sufficient for our experiments.

5.4 Computation time and memory comparison

In this section we provide quantitative measurements for the computational and memory
costs of the models. Table 5.1 shows the runtime and memory footprint of the GNP,
AGNP, ConvGNP and FullConvGNP models applied to data with one-dimensional
inputs, D = 1. In particular, we measure the runtime and memory required to perform
a single forward pass through the neural architecture of each model that was used for
the one-dimensional Gaussian tasks, on an NVIDIA GeForce RTX 2080 Ti GPU.

The ConvGNP is cheaper than the FullConvGNP: In Table 5.1 we see that
the FullConvGNP model requires a factor of two more runtime and a factor of five larger
memory footprint for this example. It should be noted that the performance difference
between the ConvGNP and FullConvGNP is less pronounced in the one-dimensional
setting, compared to the higher-dimensional settings for two reasons. First, both
the runtime and memory footprint of the FullConvGNP increase much quicker than
those of the ConvGNP, due to the fact that the FullConvGNP uses 2D-dimensional
convolutions. Second, the parallelisation of operations in the GPU may wash out some
of the differences in runtime in favour of the FullConvGNP. More specifically, in cases

5.5 Experiments and Results 73

where some of the GPU workers are idle, i.e. the GPU is not at its parallelisation limit,
additional computations can be carried out at a small overhead by using these idle
workers. Some of the additional computations required by the FullConvGNP come at
a reduced runtime cost to what we would expect if the parallelisation limit of the GPU
was reached. Since we expect this limit to be reached for larger D, we also expect the
performance difference to be more pronounced for higher dimensions, for this reason.

GNP AGNP ConvGNP FullConvGNP

Runtime (×10−3 sec) 0.58± 0.00 1.62± 0.00 1.74± 0.00 4.59± 0.01
Memory (MB) 0.476 2.971 0.231 1.23

Table 5.1 Computational and memory costs for one-dimensional models, during a forward
using a batch size of one, that is, a single task was passed to each model.

Forward pass through a CNN: To further highlight the how the runtime and
memory costs scale with the convolution dimension Dc, we measured the runtime and
memory footprint of a CNN with Dc = 1, 2 and 3. In particular we used a depth-wise
separable CNN (Chollet, 2017) similar to that used in Bruinsma et al. (2021), consisting
of twelve hidden convolutional layers in Dc = 1, 2 or 3 dimensions, each with a kernel
size of 5, measuring the runtime and memory cost of a forward pass through the network.
Thus for each dimension, the CNN is applied to a tensor with Dc dimensions, each with
a size of N = 128, plus an additional channel dimension which we set to 2. Figure 5.2
shows that the runtime and memory required by the CNN increase exponentially with
Dc. Extrapolating to Dc = 4, we observe that the runtime and memory costs become
extremely large, making the FullConvGNP difficult to apply, even to data in D = 2
dimensions, since the FullConvGNP requires Dc = 2D dimensional convolutions. For
D = 3 the FullConvGNP would require Dc = 6 dimensional convolutions, which is
would be significantly above the runtime and memory we can afford with existing
GPUs.

5.5 Experiments and Results

We apply the proposed models to synthetic and real data. Our experiments with
synthetic data comprise four Gaussian tasks and a non-Gaussian task. In our experi-
ments with real data, we evaluate our models on electroencephalogram data as well as
climate data. We train our models and the FullConvGNP, whenever applicable, using
the maximum-likelihood objective in Equation (5.4). We also train the ALNP and

74 Gaussian Neural Processes

1 2 3 4

Convolution dimension Dc

105

106

107

108

L
og

-m
em

or
y

(l
og

B
yt

es
)

Memory footprint

10−3

10−2

10−1

100

101

102
G

P
U

lo
g-

ru
nt

im
e

(l
og

se
c)

Runtime cost

Fig. 5.2 Scaling of the runtime cost and memory footprint of a CNN as a function of the
convolution dimension. See text for discussion. Error bars have been included for the runtime,
but are too small to be seen in this plot.

ConvLNP models. These are latent variable models which place a distribution q over r
and rely on q for modelling output dependencies. As in Chapter 4 we train the ALNP
and ConvLNP via a biased Monte Carlo estimate of the objective

θ∗ = arg maxθ log
[
Er∼q(r)

[
p
(
y(t); x(c),y(c),x(t), r

)]]
. (5.13)

5.5.1 Gaussian synthetic experiments

We apply the above models to synthetic datasets generated from GPs with four different
covariance functions. Note that in our experiments AGNP has a deterministic path
only. In these experiments we have access to the ground truth predictive posterior,
which we can use to assess the performance of our models. For each task, we generate
multiple datasets using a fixed covariance function, and sub-sample these datasets into
context and target sets, to which we fit the models (Figure 5.3). We consider tasks with
one and two-dimensional inputs, the latter being a problem where the FullConvGNP
cannot be feasibly applied to. Figures 5.4 and 5.5 compare the predictive log-likelihood
of the models on these tasks, from which we observe the following trends.

Dependencies improve performance: We expected that modelling dependencies
would allow the models to achieve better log-likelihoods. Indeed, for a fixed architecture,

5.5 Experiments and Results 75

−3

0

3

E
Q y

GNP AGNP ConvGNP FullConvGNP Oracle GP

−3

0

3

M
A

T
y

−3

0

3

W
P y

−2 0 2

x

−3

0

3

N
M y

−2 0 2

x
−2 0 2

x
−2 0 2

x
−2 0 2

x

Fig. 5.3 Samples drawn from the models’ predictive posteriors (green) compared to the
ground truth marginals (blue), using the kvv covariance.

−1.0

−0.5

0.0

0.5

1.0

1.5

L
og

L
ik

.

EQ

−1.0

−0.5

0.0

0.5

1.0

1.5
Matern

−1.5

−1.0

−0.5

0.0

0.5

1.0

Noisy mixture

−1.5

−1.0

−0.5

0.0

0.5

Weakly periodic

GP Oracle

GP Oracle (diag.)

GNP (meanfield)

GNP (linear)

GNP (kvv)

AGNP (meanfield)

AGNP (linear)

AGNP (kvv)

ConvGNP (meanfield)

ConvGNP (linear)

ConvGNP (kvv)

ALNP
ConvLNP
FullConvGNP

Fig. 5.4 Predictive log-likelihoods across datasets for the 1D Gaussian tasks. The oracle GP
performance is shown in dashed black. The dashed red line marks the performance of the
diagonal GP oracle, where the off-diagonal covariance terms are 0. Error bars too small to be
seen in the plots.

0.2

0.4

0.6

0.8

1.0

L
og

L
ik

.

EQ

−0.2

0.0

0.2

0.4

0.6
Matern

0.2

0.0

−0.2

−0.4

−0.6

−0.8

Noisy Mixture

−1.3

−1.2

−1.1

−1.0

Weakly Periodic

GP Oracle

GP Oracle (diag.)
ConvGNP (meanfield) ConvGNP (linear) ConvGNP (kvv) ConvNP

Fig. 5.5 Predictive log-likelihood performance of the models, across datasets for the 2D
Gaussian experiments, where the FullConvGNP is not applicable. Error bars too small to be
seen in the plots.

the correlated GNPs (, , , , ,) typically outperform their mean-field counterparts
(, ,). This suggests that our models can learn meaningful dependencies in practice,
in some cases recovering oracle performance.

Correlated ConvGNPs compete with the FullConvGNP: The correlated
ConvGNPs (,) are often competitive with the FullConvGNP (). The kvv ConvGNP

76 Gaussian Neural Processes

() is the only model, from those examined here, which competes with the FullConvGNP
in all tasks. Unlike the latter, however, the former is scalable to higher input dimensions,
and remains the best performing model in the two-dimensional tasks (Figure 5.5). For
further details on the runtime and memory costs, see Section 5.4.

Correlated GNPs outperform latent variable models: Correlated GNPs
typically outperform the latent-variable ALNP () and ConvLNP () models, which
could be explained by the fact that the GNPs have a Gaussian predictive while ALNP
and ConvLNP do not, and all tasks are Gaussian. Despite experimenting with different
architectures, and even allowing for many more parameters in the ALNP and ConvLNP
compared to the AGNP (,) and ConvGNP (,), we found it difficult to make the
latent variable models competitive with correlated GNPs. We typically found the GNP
family significantly easier to train than the latent variable models.

Kvv outperformed linear: We generally observed that the kvv models (, ,)
performed as well, and occasionally better than, their linear counterparts (, ,).
To test whether the linear models were limited by the number of basis functions Dg,
we experimented with various settings Dg ∈ {16, 128, 512, 2048}. We did not observe
a performance improvement for large Dg, suggesting that the models are not limited
by this factor. This is surprising because, as Dg →∞ and assuming flexible enough
f , g, and r, the linear models should, by Mercer’s theorem, be able to recover any
(sufficiently regular) GP posterior. We leave open the possibility that the linear
models might be more difficult to optimise and thus struggle to compete with kvv.

Predictive samples: Figure 5.3 shows samples drawn from the predictives, from
which we qualitatively observe that, like the FullConvGNP, the ConvGNP produces
good quality function samples, which capture the behaviour of the underlying process.
The ConvGNP is the only conditional model (other than the FullConvGNP) which
produces high-quality posterior samples. The predictive log-likelihood (Figure 5.4) can
be used as an objective measure for sample quality.

5.5.2 Predator-Prey experiments

To assess performance on a non-Gaussian synthetic task, we generate data from a
Lotka–Volterra predator-prey model (Arnold, 1992). This model describes the evolution
of the populations of a predator and a prey species, which are related via a stochastic
non-linear difference equation. These time series are non-Gaussian, since neither of
the populations can fall below zero. To encode this prior knowledge, we use marginal
transformations, enforcing non-negativity in the output variable.

5.5 Experiments and Results 77

1.2

1.4

1.6

1.8

2.0

P
re

d
ic

ti
ve

lo
g

lik
.

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

T
h

re
sh

ol
d

es
ti

m
at

or
lo

g
lik

.

ConvGNP (meanfield)

ConvGCNP (meanfield)

ConvGNP (linear)

ConvGCNP (linear)

ConvGNP (kvv)
ConvGCNP (kvv)
ConvLNP
FullConvGNP

Fig. 5.6 The predator modelling task. Model fits (left) where black and red crosses show
the context and target sets of a dataset, the blue regions show the marginals, and the
green lines are samples from the predictive. The dashed line marks y = 0. Predictive log
likelihoods and threshold estimator log likelihoods for the tested models (right). The dashed
line indicates random prediction. Error bars for per-datapoint predictive log-likelihoods and
threshold estimation task log-likelihoods too small to be seen in the plots.

We generate synthetic data following the method in Chapter 3 (see Section C.3).
We train and evaluate the ConvGNP, ConvLNP and FullConvGNP models. We also
train ConvGCNPs with an exponential CDF transformation ΦM(u) = 1− e−u/ψ, ψ =
ψ(x(c),y(c),x(t)). The marginals of these ConvGCNPs explicitly encode the prior
knowledge that the populations are non-negative quantities. Figure 5.6 shows the
model fits on a fixed predator time series. It also shows the predictive log-likelihood
on test data and the log-likelihood on a downstream estimation task, explained below.

Dependencies improve performance: Similarly to the Gaussian tasks, we
observe that modelling output dependencies (, , ,) improves the predictive log-
likelihood over mean field models (,). Further, the kvv covariance (,) performs
better than the linear covariance (,).

0 10 20 30 40
x

0

1

2

3

y

0 10 20 30 40
x

ConvG NP (kvv)ConvG NP (meanfield)C C

Fig. 5.7 Illustration of the failure mode of mean-field models in the threshold estimation task.
The context and target are shown in black and red crosses, and the black line shows the
threshold for this context set. In each plot, three samples from the predictive are shown in
orange, green and blue.

78 Gaussian Neural Processes

Marginal transformations: We observe that exponential marginal transforma-
tions improve performance in the correlated models, as the ConvGCNP models (,)
typically exhibit better performance than their ConvGNP counterparts (,). Further,
the ConvGCNPs produce non-negative posterior samples, which are arguably more
plausible than the samples produced the other models.

Comparison with the ConvLNP and FullConvGNP: The ConvGNP with a
kvv covariance () is competitive with the FullConvGNP (), while adding marginal
transformations can further improve the model’s performance (). Both models
outperform the ConvLNP () by a considerable margin.

Correlated GNPs and downstream estimation: We assessed the performance
of the models on a downstream estimation task, illustrated in Figure 5.7. Given a
context set, we use the trained models to estimate the probability that the population
will exceed the maximum population observed in the context, by a factor of at least 1.1.
Mean-field models make independent predictions, and thus the proportion of function
samples which exceed the threshold is unreasonably large. By contrast, a correlated
model avoids this failure mode as their function samples are coherent. Figure 5.6 shows
that correlated models (, , , ,) are substantially more accurate than mean-field
models (,) in this threshold estimation task, with the latter being marginally worse
than a random prediction.

5.5.3 Electroencephalogram experiments

We applied the proposed and competing models on a real electroencephalogram (EEG)
dataset. This dataset comprises of 7632 multivariate time series, collected by placing
electrodes on different subjects’ scalps (Zhang et al., 1995). Each time series exhibits
correlations across channels, as the levels of activity at different regions of the subjects’
brain are correlated. It is plausible that there also exist patterns which are shared
between different time series from a single subject, as well as across subjects, making
this an ideal task for a multi-output meta-learning model such as the ConvGNP. We
showcase the ability of the ConvGNP to perform correlated multi-output predictions
and handle missing data. We train the models on time series with 7 channels, where
we occlude randomly chosen windows of 3 of the channels, using the occluded values
as targets. Table 5.2 shows the models’ performance on held-out test data, and
Figure 5.8 shows an example fit of a ConvGNP. To demonstrate the benefits of meta-
learning, the table includes a multi-output GP baseline (MOGP, Bruinsma et al.,
2020), which is trained from scratch for every task, without a meta-learning component

5.5 Experiments and Results 79

(see Section C.4). Observe that this baseline is significantly outperformed by all
meta-models.

Correlated models improve predictive log-likelihood: We observe that the
correlated ConvGNPs show a considerable improvement in terms of log-likelihood,
compared to the mean-field ConvGNP as well as the ConvLNP. This improvement in
log-likelihood suggests that the correlated ConvGNPs learn to represent meaningful
correlations in the target outputs.

ConvGNP ConvLNP MOGPmean-
field

linear kvv

Log Lik. −5.27±0.01 −1.39±0.01 −1.24±0.00 −3.96±0.01 −12.7±0.42

Table 5.2 Per-datapoint log-likelihood on the held-out EEG test set.

0.3 0.4 0.5 0.6
x

−15
−10
−5

0
5

y

0.3 0.4 0.5 0.6
x

0.3 0.4 0.5 0.6
x

Fig. 5.8 Fit of the ConvGNP (kvv) on the EEG data. Each pane shows one of the three
channels with unobserved targets (red crosses). All other data (black crosses), including the
remaining four channels are observed. Marginals are shown in green, and two samples are
shown in blue and pink.

ConvGNPs can model multivariate and partially observed data: Figure 5.8
shows that the kvv ConvGNP is able to infer unobserved values from the EEG data
of a held-out test example. The model produces both calibrated marginals as well as
plausible function samples, and represents not only temporal, but also cross-channel
correlations.

5.5.4 Temperature downscaling for environmental modelling

Lastly, we apply the models on a environmental modelling task. In climate modelling,
future projections are obtained by simulating the atmospheric equations of motion
on a spatio-temporal grid. Unfortunately, computational constraints typically limit
spatial resolution to around 100-200km (Eyring et al., 2016), which is insufficient to
resolve extreme events and produce local projections (Allen et al., 2016; Maraun et al.,

80 Gaussian Neural Processes

2017). To address this issue, so-called statistical downscaling is routinely applied. A
mapping from low-resolution simulations to historical data is learnt, and is then applied
to future simulations to produce high-resolution predictions (Maraun and Widmann,
2018a).

While numerous data-driven approaches to statistical downscaling exist, they
are often limited to making predictions on a fixed set of points at which historical
observations are available (Baño-Medina et al., 2020; Bhardwaj et al., 2018; Liu et al.,
2020; Misra et al., 2018; Pan et al., 2019; Sachindra et al., 2018; Vandal et al., 2018,
2019, 2017; White et al., 2019). Recently, Vaughan et al. (2022) have applied ConvCNPs
to temperature downscaling, enabling predictions at arbitrary locations. Though the
ConvCNP outperforms an ensemble of existing methods, it is unable to generate
coherent samples, limiting its practical applicability.

Experimental setup: We modify the model of Vaughan et al. (2022), which
maps a low-resolution grid of reanalysis data (Dee et al., 2011) together with local
orographic information, to a set of features used to parameterise a Gaussian predictive.
We use reanalysis and historical station data (Dee et al., 2011) throughout Europe,
to set up three experiments, where we train on data from the years 1979-2002, and
make predictions on a held out test set from the years 2003-2008, emulating realistic
prediction tasks using future climate simulations. The first experiment uses a training
set of 86 specific stations in Europe, following a standardised experimental protocol
known as the VALUE framework (Maraun et al., 2015), for which extensive baselines
are available. Note that we train and test the models on the same stations, but at
different time periods. The second is a larger experiment consisting of a training set
of 3043 stations across Europe and the 86 VALUE stations as a held out test set.
The third experiment uses 713 training and 250 held out test stations, all located in
Germany, which has densest station coverage in Europe. Locations of training and test
stations for each experiment are shown in Figure 5.9.

For further details on our setup, see Section C.5.
This experiment highlights the benefits of correlated models, since the stations are

near one another and are thus highly correlated.
Correlations improve performance: Across all three experiments, modelling

correlations improves the predictive log-likelihood (Table 5.3). Since small differences
are observed in the MAE, we conclude that the correlated models have learnt to model
meaningful statistical output dependencies. The log-likelihood improvement is greatest
for the Germany experiment, where the stations are near one another and thus more
strongly correlated. In the VALUE experiment, the correlated ConvGNPs improve on

5.5 Experiments and Results 81

Fig. 5.9 Locations of the training (top) and test (bottom) target locations for Europe
(VALUE), Europe (all) and Germany.

Fig. 5.10 Illustration of sampled temperature fields. After training on low-res. simulations
(top left) and observed data (bottom left), the models are conditioned on future low-res.
simulations, to make predictions. The remaining columns show the predicted mean and three
samples from the predictive.

the ConvLNP, as well as on the mean-field ConvGNP, which has itself been shown
(Vaughan et al., 2022) to outperform an ensemble of widely used statistical downscaling
methods.

Sampling coherent temperature fields: Correlated ConvGNP models can be
used to sample coherent temperature fields, something that mean-field models cannot
perform. Figure 5.10 shows that the sampled fields are not only coherent, but also
exhibit non-trivial correlation structure.

82 Gaussian Neural Processes

Europe (VALUE) Europe (all) Germany

ConvGNP (mean-field) −148.12 / 1.06 −176.93 / 1.41 −263.90 / 0.94
ConvGNP (LINEAR) −131.58 / 1.03 −153.23 / 1.33 −224.74 / 0.92
ConvGNP (KVV) −131.47 / 1.02 −157.25 / 1.30 −209.06 / 1.00
ConvLNP −144.14 / 1.08 −163.11 / 1.38 −252.94 / 1.13
VALUE baseline (MAE) 1.32

Table 5.3 Predictive log-likelihood and MAE for the three temperature prediction experiments.

5.6 Conclusion and Discussion

In this chapter we presented the Gaussian neural process, a tractable method for
modelling statistical dependencies in the outputs of a CNP. GNPs parameterise the
covariance of a predictive Gaussian by passing context-dependent feature vectors
through positive definite covariance functions. The resulting models, account for
output correlations, but unlike previous methods, they can be applied to data with
higher-dimensional inputs while maintaining an analytically tractable log-likelihood,
which makes them especially easy to train. GNPs can be extended to multi-output
regression, and also combined with invertible marginal transformations to model
non-Gaussian data.

Similar approaches which model output correlations include the FullConvGNP
model of Bruinsma et al. (2021) which, however, cannot be feasibly scaled beyond
one-dimensional input data, due to its use of 2D-dimensional convolutions. Rudner
et al. (2018) noted that an NP with an affine decoder and Gaussian conditional prior
defines a GP predictive similar to our linear covariance. The GNP covariances we
presented bear similarities to deep kernels (DKs; Calandra et al., 2016; Patacchiola
et al., 2019; Wilson et al., 2015). DKs also use neural networks in the context of
GPs but, unlike GNPs which define a GP predictive, DKs define a GP prior, which
is conditioned on data using Bayes’ rule. Thus, the computational cost of DKs at
test-time is cubic in the context points, whereas that of GNPs is linear, enabling the
latter to scale to larger datasets.

ConvGCNP models can be regarded as meta-learning versions of the copula processes
of Wilson and Ghahramani (2010) and Jaimungal and Ng (2009). These transform
the marginals of a GP, defining a non-Gaussian prior process, and perform inference
over it, which requires compute which scales cubically with the size of the context.
By contrast, ConvGCNPs directly parameterise a predictive, making their test-time
complexity linear in the context.

5.6 Conclusion and Discussion 83

In this chapter, we saw that modelling correlations improves predictive performance
over mean-field models on Gaussian and non-Gaussian synthetic data, including a
downstream estimation task that mean-field models cannot solve. GNPs also show
improved performance over their mean-field and latent counterparts on real EEG and
climate tasks. In statistical temperature downscaling, our models outperform a standard
ensemble of widely used methods in statistical downscaling, while providing spatially
coherent temperature samples. This renders our models suitable for application to
climate impact studies.

GNPs are successful in modelling output space correlations by modifying the CNP
architecture to parameterize a full covariance Gaussian. In the next chapter, we explore
the idea of using unmodified CNP architectures trained using standard CNP training to
produce mean-field predictions but evaluated autoregressively to also produce correlated
predictions.

Chapter 6

Autoregressive Neural Processes

Much of this thesis has been concerned with developing novel neural process archi-
tectures, whether conditional or latent, to model dependencies in their output – a
shortcoming of the original CNP. The following chapter takes a different approach,
utilizing existing models and architectures, but modifying their application at test
time. Taking advantage of the product rule for joint probability distributions, neural
process models, even ones trained to produce mean field predictions, can be applied
autoregressively to achieve a predictive distribution modelling dependencies between
output variables. The following chapter investigates autoregressive neural process
models and compares them with existing approaches discussed in previous chapters.

6.1 Introduction

In the previous chapters, we discussed how CNPs are a family of meta-learning models
which combine the flexibility of deep learning with the uncertainty awareness of
probabilistic models. They are trained to produce well-calibrated predictions via a
simple maximum-likelihood procedure, and naturally handle off-the-grid and missing
data, making them ideally suited for tasks in climate science and healthcare. However,
initial CNP architectures were not able to model statistical dependencies (Figure 6.1;
left) harming their predictive performance and making it impossible to draw coherent
function samples necessary for downstream estimation tasks (Markou et al., 2022).
LNPs use a latent variable to induce dependencies and model non-Gaussianity but
this approach comes with its own set of challenges including an intractable likelihood
necessitating approximate inference.

As discussed in Chapter 5, the fully convolutional Gaussian neural process (Full-
ConvGNP) maintains tractability at the cost of only allowing Gaussian predictions.

86 Autoregressive Neural Processes

Fig. 6.1 A ConvCNP trained on random sawtooth functions and applied in standard mode
(left) and in our proposed autoregressive (AR) mode (right). The black crosses denote
observed data points, the blue lines show model samples, and the bottom plots show the
marginal predictive distributions at the locations marked by the dashed vertical lines. In
standard mode, the CNP models each output with an independent Gaussian (left). However,
the same CNP, when run in AR mode, can produce coherent samples and model multimodality
(right).

It uses a neural network to define the mean and covariance function of a predictive
Gaussian process (GP) which models dependencies. However, it uses a much more com-
plex architecture and is only practically applicable to problems with one-dimensional
inputs, limiting its adoption compared to the more lightweight CNP. Also discussed in
Chapter 5, the Gaussian neural process (GNP) is considerably simpler but sacrifices
performance relative to the FullConvGNP.

In this chapter we examine a much simpler method for modelling dependencies
with neural processes that has been largely overlooked: autoregressive (AR) sampling.
AR sampling requires no changes to the architecture or training procedure. Instead,
we change how the CNP is deployed at test time, extracting predictive information
that would ordinarily be ignored. Instead of making predictions at all target points
simultaneously, we autoregressively feed samples back into the model. AR CNPs
trade the fundamental property of consistency under marginalisation and permutation,
which is foundational to many neural process models, for non-Gaussian and correlated
predictions. In Table 6.1 we place AR CNPs within the framework of other neural
process models.

The work in this chapter is based on the submission ‘Autoregressive Conditional
Neural Processes’ presented at the International Conference on Learning Represen-
tations, 2023. The research was conducted with my co-lead authors Stratis Markou
and Wessel P. Bruinsma, and collaborators Andrew Y. K. Foong, Anna Vaughan, Tom
Andersson, and Anthony Buonomo as well as our advisors Scott Hosking and Richard
E. Turner. I contributed and was closely involved with all aspects of the work including
the formulation of the model, software development1, experimentation and writing of
the paper. All of of the work in the paper was a collaborative effort by our entire team.

1Source code available at https://github.com/wesselb/neuralprocesses.

https://github.com/wesselb/neuralprocesses

6.1 Introduction 87

Class Consistent Dependencies Non-Gaussian Exact Training

AR CNPs ✗ ✓ ✓ ✓
CNPs ✓ ✗ ✓ ✓
GNPs ✓ ✓ ✗ ✓
LNPs ✓ ✓ ✓ ✗

Table 6.1 Comparison of various classes of neural processes. Each row shows whether a
model class produces consistent predictions, models dependencies, can produce non-Gaussian
predictions, and can be trained without approximating the likelihood. For CNPs, even though
the presentation by Garnelo et al. (2018a) assumes Gaussian predictions, it is simple to relax
this Gaussianity assumption; this is not the case for GNPs.

The key contributions of this chapter are:

• We show that CNPs used in AR mode capture rich, non-Gaussian predictive
distributions and produce coherent samples (Figure 6.1). This is remarkable
as the CNPs used have Gaussian likelihoods, are not trained to model joint
dependencies or non-Gaussianity, and are significantly cheaper to train than
LNPs and FullConvGNPs (Figure 6.2).

• We prove that given sufficient data and model capacity, the performance of AR
CNPs is at least as good as that of GNPs, which explicitly model correlations in
their predictions.

• Viewing AR CNPs as a type of neural density estimator (Uria et al., 2016), we
highlight their connections to a range of existing methods in the deep generative
modelling literature.

• In an extensive range of Gaussian and non-Gaussian regression tasks, we show that
AR CNPs are consistently competitive with, and often significantly outperform,
all other neural process models in terms of predictive log-likelihood.

• We deploy AR CNPs on a range of tasks involving real-world climate data.
To handle the high-resolution data in a computationally tractable manner, we
introduce a novel multi-scale architecture for ConvCNPs. We also combine AR
ConvCNPs with a beta-categorical mixture likelihood, producing strong results
compared to other neural processes.

AR CNPs represent a promising first application of this procedure to the simplest class
of neural processes, and motivates future work on applications of AR sampling to other
neural process models.

88 Autoregressive Neural Processes

6.2 Autoregressive Conditional Neural Processes

Let us revisit some of the notation that we will use in this chapter. Let P be the set of
all Y-valued stochastic processes on X . Neural processes (NPs) directly and flexibly
parametrise a prediction map πθ : D → Q where Q ⊆ P and where θ are learnable
parameters. CNPs set Q to be the collection of GPs f such that cov(f(x), f(y)) = 0
for x ̸= y. GNPs let Q be the collection of continuous GPs. Latent NPs (LNPs;
Garnelo et al., 2018b) let Q be a collection of non-Gaussian processes by making use
of a latent variable. Let P

x
(t)
m
π(D(c)

m) denote the finite-dimensional distribution of the
process π(D(c)

m) evaluated at inputs x(t)
m , and denote its density by qθ(• |x(t)

m , D
(c)
m). To

learn the parameters θ, NPs seek to maximise:

LM(π) = 1
M

∑M
m=1 log qθ(y(t)

m |x(t)
m , D

(c)
m). (6.1)

For CNPs and GNPs, LM can be computed exactly since qθ is Gaussian.2. However, for
LNPs, LM must be approximated (Foong et al., 2020; Garnelo et al., 2018b), typically
impacting performance.

Autoregressive CNPs. Our proposal is to take an existing CNP and run it in
an autoregressive fashion, feeding predictions for earlier outputs back into the model.
Inspired by the product rule, we define the joint predictive as a product of conditionals,
modelling each conditional with a CNP. For example, in the case of three target points,
qθ(y(t)

3 |y
(t)
1:2, D

(c)
m)qθ(y(t)

2 | y
(t)
1 , D(c)

m)qθ(y(t)
1 |D(c)

m). To enable a theoretical analysis of this
procedure, we now proceed to set up more formal notation. Suppose that πθ : D → Q
is an NP, and we wish to predict at some target inputs x(t) given a context set D(c).
Standard NPs would output the predictive Px(t)πθ(D(c)) which, for CNPs, would be
a factorised Gaussian. We propose to instead roll out the NP autoregressively, as
described in Proc. 6.2.1.

Procedure 6.2.1 (Autoregressive application of neural processes). For a neural process
πθ, context set D(c) = (x(c),y(c)), and target inputs x(t), let ARx(t)(πθ, D(c)) be the
distribution defined as follows:

for i = 1, . . . , N , y
(t)
i ∼ P

x
(t)
i
πθ(x(c) ⊕ x(t)

1:(i−1), y
(c) ⊕ y(t)

1:(i−1)), (6.2)

where a⊕ b concatenates two vectors a and b. See Figure D.1 in Section D.3 for an
illustration.

2Unless otherwise specified, we assume CNPs use Gaussian likelihoods, as in Garnelo et al. (2018a).
However, it is straightforward to modify them to use non-Gaussian likelihoods, as we do in Section 6.4.4.

6.2 Autoregressive Conditional Neural Processes 89

100 101 102 103

Wallclock training time (min.)

−2

−1

0

1

N
L

L
/

d
at

ap
oi

nt FullConvGNP

ConvLNP

ConvCNP

AR ConvCNP

Fig. 6.2 Negative log-likelihoods on non-Gaussian sawtooth data. Deploying the ConvCNP
in AR mode dramatically improves performance, and outperforms state-of-the-art NPs with
Gaussian (FullConvGNP) and non-Gaussian (ConvLNP) predictive distributions, at a fraction
of the training cost.

Since earlier samples y(t)
i feed back into later applications of πθ, the whole sample

y(t) is correlated, even if πθ does not model dependencies between target outputs, as
with CNPs. At test time, when evaluating the corresponding the density q

(AR)
θ of

ARx(t)(πθ, D(c)) at y(t), we use the formula

log q(AR)
θ (y(t) |x(t), D(c)) = ∑N

i=1 log qθ(y(t)
i |x

(t)
i , D

(c) ⊕ (x(t)
1:(i−1),y

(t)
1:(i−1))). (6.3)

Whilst any NP can be used in AR, we focus on CNPs as they are the computationally
cheapest class.

Understanding the infinite data limit. To better understand why AR CNPs
successfully model dependencies, we analyse the idealised case of infinite data and
model capacity. Let p(f) be the data-generating stochastic process, and let p(ε) be the
stochastic process representing observation noise, defined by letting ε(x) be a vector of
i.i.d. noise variables for all x. We assume

y(c)
m = ym(x(c)

m) and y(t)
m = ym(x(t)

m) where ym(•) = fm(•) + εm(•), (6.4)

(fm)Mm=1 are i.i.d. draws from p(f), and (εm)Mm=1 are i.i.d. draws from p(ε). Define
the prediction map πy : D → P as the mapping from a data set to the posterior
over y, πy(D) = p(y |D). Then LM is a Monte Carlo approximation of the following
infinite-sample objective (Foong et al., 2020):

L∞(π) = −Ep(D(c))p(x(t))[KL(Px(t)πy(D(c))||Px(t)π(D(c)))] + const. (6.5)

90 Autoregressive Neural Processes
y(

x) x 1 x 2 x 3 x 4

Ground Truth (Top) & AR Predictions Left to Right (Bottom)

y(x1)

D
en

si
ty

y(x2) y(x3) y(x4)
True Ideal CNP AR Ideal CNP

Fig. 6.3 Top: generative process: mixture model of three deterministic functions with additive
Gaussian noise. Bottom: at the four target locations indicated by dashed lines, the panes
show the true distribution and predictions by the ideal CNP and the ideal CNP applied
autoregressively at the targets from left to right. Notice that the first first AR predictive
distribution (left) is a Gaussian and the AR predictive distributions improve as we take more
AR samples (left to right). Details in Section D.5.

Under appropriate regularity assumptions, L∞(π) is maximised over all π when the
expected KL divergence term is zero, which occurs if and only if π = πy. In practice,
NPs do not maximise L∞(π) over all π, but (i) use a finite-sized meta–data set and (ii)
restrict Q ⊆ P .

what we compute in practice

πM ∈ arg max
all π : D→Q

LM(π) −−−−→
M→∞

ideal NP

π∞ ∈ arg max
all π : D→Q

L∞(π) −−−→
Q→P

exact prediction map

πy = arg max
all π : D→P

L∞(π)

(6.6)

Here πM is an NP trained on the practical objective equation 6.1, which, in the limit
of infinite data, approximates the so-called ideal NP π∞. The ideal NP depends on
the choice of Q, i.e. the class of NPs under consideration, and, in turn, approximates
πy. For CNPs and GNPs, using the fact that minimising KL(p, q) over q matches
moments (Minka, 2001), we can readily determine and even practically compute the
ideal NP for these two classes of NPs. The ideal CNP predicts a diagonal-covariance GP
whose mean function and marginal variance function match πy: π∞(D) = GP(m, k)
where m(x) = E[y(x) |D], and k(x, x′) = V[y(x) |D] if x = x′ and k(x, x′) = 0
otherwise. On the other hand, the ideal GNP predicts a GP whose mean function

6.2 Autoregressive Conditional Neural Processes 91

and full covariance function match πy: π∞(D) = GP(m, k) where m(x) = E[y(x) |D],
k(x, x′) = cov(y(x), y(x′) |D). The main result of this subsection is that the ideal CNP,
despite not modelling correlations, becomes superior to the ideal GNP when deployed
in AR mode:

Proposition 2 (Advantage of AR CNPs over GNPs). Assume appropriate regularity
conditions on y. Let πC be the ideal CNP and let πG be the ideal GNP. Then, for all
inputs x and data sets D ∈ D,

KL(Pxπy(D),ARx(πC, D)) ≤ KL(Pxπy(D), PxπG(D)). (6.7)

We provide a proof in Section D.1. Intuitively, the advantage of AR CNPs comes
from their ability to model non-Gaussian dependencies. Proposition 2 shows that to
outperform the GNP, it suffices to train a CNP to model the marginals of πy, and rely
on the AR procedure to induce dependencies. A visualisation of the ideal CNP and
the ideal CNP applied autoregressively can be seen in Figure 6.3.

Consistency and the AR design space. As shown in Table 6.1, AR CNPs give
up the fundamental property of consistency, as the distributions {ARx(πθ, D(c)

m) : x ∈
XN , N ∈ N} are not consistent under permutation or marginalisation: permuting x
can change the distribution, as can introducing and marginalising new target points.
This violates the conditions of the Kolmogorov extension theorem (Oksendal, 2013),
preventing the distributions from defining a consistent stochastic process. There is
thus a large design space involved when deploying AR CNPs, where choices that have
no effect on the predictions of other NPs can now significantly affect performance.

One such choice is how many points to sample at a time. Sampling one at a time
induces dependencies between all points, but requires N forward passes. Alternatively,
we could divide the N inputs in x(t) into blocks of K points each, and sample each block
with a single CNP forward pass. This requires N/K forward passes, with points in the
same block conditionally independent. If K = N , this is the standard CNP prediction,
and if K = 1, we recover Procedure 6.2.1. This provides a knob for practitioners to
trade off between faster, consistent, but less expressive standard CNP predictions, and
slower, less consistent, but more expressive AR predictions. In this paper, we use full
AR mode with K = 1, and leave an investigation of block AR sampling to future work.

Obtaining smooth samples. Due to the lack of consistency in AR mode, the
spacing chosen between target points can significantly affect performance. For example,
care must be taken so the number of target points is not much greater than the size

92 Autoregressive Neural Processes

ConvCNP (AR) ConvCNP (AR)Ground Truth Ground Truth

Fig. 6.4 Comparison of noiseless (left) and noisy (right) samples from an AR ConvCNP
trained on data sampled from a GP with an exponentiated-quadratic kernel, and the ground
truth GP. The noiseless AR samples were generated from the noisy AR samples using the
procedure suggested by Proposition 3.

of the context sets seen during train time, to avoid confronting the model with an
out-of-distribution context set size at test time. This raises the question of how to
sample functions on a very fine grid. Furthermore, since CNPs do not differentiate
between epistemic and aleatoric uncertainty, it is not clear how to obtain smooth,
noiseless samples, that is, samples for f uncorrupted by the i.i.d. noise ε in equation 6.4.
The following proposition shows that, for a smooth sample corrupted by additive noise,
the smooth component can be approximated with the predictive mean conditioned on
noisy observations:

Proposition 3 (Recovery of smooth samples). Let X ⊆ R be compact, and let f be a
stochastic process with surely continuous sample paths and supx∈X∥f(x)∥L2 <∞. Let
(εn)n≥0 be i.i.d. (potentially non-Gaussian) random variables such that E[ε0] = 0 and
V[ε0] < ∞. Consider any sequence (xn)n≥1 ⊆ X , and let x∗ ∈ X be a limit point of
(xn)n≥1. If y(x∗) = f(x∗) + ε0 and yn = f(xn) + εn are noisy observations of f , then

lim
n→∞

E[y(x∗) | y1, . . . , yn] = f(x∗) almost surely. (6.8)

We provide a proof in Section D.2. Equation (6.8) suggests the following two-
step procedure for obtaining smooth samples from AR CNPs. Step 1: Let x1:n

be a number target inputs that does not exceed the number of points seen during
training. Sample y1:n ∼ ARx1:n(πθ, D(c)

m). This sample includes observation noise.
Step 2: Remove the noise from the sample by passing it through the model once
more: N (µ1:n,D) = Px1:nπθ(D(c)

m ⊕ (x1:n,y1:n)). Here the predictive mean µ1:n forms
the noiseless sample. To produce a sample at arbitrarily many inputs, one may also
evaluate N (µ′1:n,D) = Px′

1:n
πθ(D(c)

m ⊕ (x1:n,y1:n)) where x′1:n is arbitrary. This result
of this procedure is illustrated in Figure 6.4, and was used to generate the noiseless
samples shown in Figure 6.1 (right). Figure D.1 in Section D.3 also illustrates this
two-step procedure in a pictorial step-by-step fashion.

6.3 Connections to Other Neural Distribution Estimators 93

6.3 Connections to Other Neural Distribution Esti-
mators

Various paradigms have been developed for neural distribution estimators, includ-
ing normalising flows (Dinh et al., 2014), generative adversarial networks (GANs;

Neu
ra

l pro
ce

ss
es

Norm
alis

in
g

flow
s

Gen
er

ativ
e

adver
sa

ria
l net

work
s

Varia
tio

nal

auto
en

co
der

ss

Auto
re

gre
ss

ive

m
odels

1,2

3

4-6

7

8

9–15

16

17, 18

19

20

21

22–27

28, 29

30

31, 32

33, 34

3735, 36,

38

39

40–42

43–47

48–51

52–57

58
59

60, 61

62

MLP

Attention

Conv.

Finite

Countable

Uncountable

Neural processes

1. CNP (Garnelo et al.,
2018a)

2. GNP (Markou et al., 2022)
3. ACNP (Kim et al., 2019)
4. ConvCNP Gordon et al.

(2020)
5. ConvGNP (Markou et al.,

2022)
6. FullConvGNP (Bruinsma

et al., 2021)

Normalising flows

7. NICE (Dinh et al., 2014)
8. Flow++ (Ho et al., 2019)
9. RealNVP (Dinh et al.,

2016)
10. FFJORD (Grathwohl et al.,

2018)
11. Glow (Kingma and Dhari-

wal, 2018)
12. i-ResNets (Behrmann

et al., 2018)
13. Res. Flows (Chen et al.,

2019)
14. IAF (Kingma et al., 2016)
15. NAF (Huang et al., 2018)
16. TGP (Maroñas et al., 2021)

17. BRUNO (Korshunova
et al., 2020)

18. Copula GNP (Markou
et al., 2022)

19. FlowGAN (Grover et al.,
2018)

GANs

20. GAN (Goodfellow et al.,
2014)

21. SAGAN (Zhang et al.,
2019)

22. DCGAN (Radford et al.,
2016)

23. WGAN (Arjovsky et al.,
2017)

24. InfoGAN (Chen et al.,
2016a)

25. SNGAN (Miyato et al.,
2018)

26. BigGAN (Brock et al.,
2018)

27. StyleGAN (Karras et al.,
2019)

28. Spatial GAN (Jetchev
et al., 2016)

29. ∞-GAN (Lu et al., 2020)
30. PresGAN (Dieng et al.,

2019)

Variational autoencoders

31. VAEs (Kingma and
Welling, 2014)

32. IWAE (Burda et al., 2015)
33. Conv. VAE (Salimans

et al., 2015)
34. VDVAE (Child, 2020)
35. GP-VAE (Fortuin et al.,

2020)
36. SGP-VAE (Ashman et al.,

2020)
37. LNP (Garnelo et al.,

2018b)
38. ALNP (Kim et al., 2019)
39. ConvLNP (Foong et al.,

2020)
40. VQ-VAE (Oord et al.,

2017)
41. PixelVAE (Gulrajani et al.,

2016)
42. VLAE (Chen et al., 2016b)

Autoregressive models

43. RNADE (Uria et al., 2013)
44. NADE (Uria et al., 2016)
45. DeepNADE (Uria et al.,

2014)

46. EoNADE (Uria et al.,
2014)

47. MADE (Germain et al.,
2015)

48. PixelSNAIL (Chen et al.,
2018)

49. Sparse Transformer (Child
et al., 2019)

50. DEformer (Alcorn and
Nguyen, 2021)

51. XLNet (Yang et al., 2019)
52. ConvNADE (Uria et al.,

2016)
53. WaveNet (Oord et al.,

2016a)
54. PixelCNN (Oord et al.,

2016b)
55. PixelCNN++ (Salimans

et al., 2017)
56. Fast PixelCNN++ (Ra-

machandran et al., 2017)
57. Scalable Pixel Net (Menick

and Kalchbrenner, 2018)
58. ARDMs (Hoogeboom et al.,

2021)
59. AR CNP
60. AR ACNP
61. Transformer NP (Nguyen

and Grover, 2022)
62. AR ConvCNP

Fig. 6.5 Conceptual diagram showing the relationships between AR CNPs and various neural
distribution estimators. The vertical axis denotes whether the model learns a distribution
over a finite number of random variables, a countably infinite number, or an uncountably
infinite number. The axis into the page denotes whether the architecture is MLP-based, or
uses attention or convolutions. From left to right, we show different modelling paradigms.
Fruitful exchanges occur when NPs (highlighted in green) are introduced into other modelling
paradigms. The proposed AR CNPs can be viewed as introducing NPs to the AR modelling
paradigm.

94 Autoregressive Neural Processes

Goodfellow et al., 2014), variational autoencoders (VAEs; Kingma and Welling, 2014),
autoregressive models (Uria et al., 2016), and diffusion models (Ho et al., 2020; Sohl-
Dickstein et al., 2015). We argue that NPs should be viewed as neural distribution
estimators alongside these models, revealing interesting connections between them.
Figure 6.5 visualises the landscape of neural distribution estimators, highlighting the
dimensionality of the target distribution, and the use of attention or convolution.

Our proposed AR CNPs can be viewed both as a kind of NP, and as an instance of
autoregressive models. As such, they inherit the strengths of AR models, such as their
ability to model complex dependencies with a tractable likelihood, but also some of
their weaknesses, most notably slow test-time sampling. Slow sampling is the main
drawback of applying AR CNPs to large target sets, though it may be possible to
adapt techniques for speeding up other AR models to AR CNPs (Ramachandran et al.,
2017). One major difference between AR CNPs and existing AR models is that AR
CNPs model an uncountably infinite set of variables, which allows querying arbitrary
input locations but leads to the consistency issues discussed in Section 6.2.

Another distinguishing feature of the AR CNP is that it is trained to be order
agnostic with respect to the product rule decomposition of the joint distribution: there
is no preferred ordering of the input values during train time. DEformer (Alcorn and
Nguyen, 2021), EoNADE (Uria et al., 2014), and XLnet (Yang et al., 2019) are other
examples of AR models designed for order agnosticism. The AR CNP shares design
choices with other AR models to achieve this goal: (i) a shared architecture is used to
produce each conditional distribution, similar to WaveNet (Oord et al., 2016a) and
PixelCNN (Oord et al., 2016b); (ii) the datapoint index is given as input to the network
as in the DEformer model (Alcorn and Nguyen, 2021); and (iii) training maximises a
log-likelihood including all decompositions of the joint distribution, similar to EoNADE
(Uria et al., 2014) and XLnet (Yang et al., 2019).

In recent work, Nguyen and Grover (2022) proposed the Transformer NP (TNPs),
which uses a causally-masked transformer architecture with an autoregressive likelihood.
In contrast, rather than proposing a new AR architecture, our work focuses on running
existing CNPs in AR mode to obtain coherent samples and improved likelihoods,
without modifying the architecture or training procedure. In prior work, Volpp et al.
(2021) used AR sampling in order to visualise samples from CNPs. However, their
work focuses on proposing a novel context aggregation mechanism for NPs, and they
do not evaluate the likelihood of CNPs autoregressively or investigate any performance
gains.

6.4 Experiments and Results 95

Figure 6.5 also shows the connections betweeen NPs and VAEs and normalising
flows. Just as VAEs typically use decoders that parametrise a factorised distribution,
and rely on the latent variable to induce dependencies, the same is true for LNPs.
Again, the key difference with standard VAEs is that LNPs model a distribution over
an uncountable number of variables. In addition, models like conditional BRUNO
(Korshunova et al., 2020) and copula GNPs (Markou et al., 2022) combine ideas from
NPs and normalising flows, by transforming a stochastic process with an invertible
transformation. Finally, GAN models such as Spatial GAN (Jetchev et al., 2016) and
∞−GAN (Lu et al., 2020) model countable numbers of variables, such as images of
arbitrary size. Inspecting Figure 6.5, we see that GANs are the only class of models
depicted that do not currently have an NP version, or a version that models an
uncountable number of variables. This suggests adversarial training of NPs as an
interesting avenue for future investigation.

6.4 Experiments and Results

In this section we investigate the performance of AR CNPs on synthetic and real data.
Across a wide range of tasks, the AR CNP is competitive with much more sophisticated
approaches. Throughout, we train LNPs with both the ELBO and ML objective (see
Sections 4.3.2 and 4.4.1). For all experiments, we use a random ordering of the target
points inProcedure 6.2.1; see Section D.4 for a justification.

6.4.1 Synthetically Generated Gaussian and Non-Gaussian
Data

Synthetic experiment setup. We evaluate an extensive collection of NP models on
a wide range of Gaussian and non-Gaussian synthetic regression tasks. We consider
tasks with functions drawn from (i) different GPs; (ii) a non-Gaussian sawtooth process
(as in Figure 6.1); (iii) a non-Gaussian mixture task, where, with equal probability, we
sample the function from one of three possible GPs or the sawtooth process. We also
consider various versions of the tasks for different input and output dimension dx, dy,
with dependencies across the output channels. To ensure a fair comparison, we choose
architectural details to make the parameter counts comparable between all models.

Results. Table 6.2 highlights the best performing models on some representative
tasks; for further results across all twenty synthetic tasks and further experimental
details, see Section D.8. The AR procedure dramatically improves the performance

96 Autoregressive Neural Processes

of the ConvCNP, with the AR ConvCNP being the best performing model for most
tasks, except on the Gaussian EQ task where it performs marginally worse than the
FullConvGNP. In particular, the AR ConvCNP outperforms the FullConvGNP and
ConvGNP on non-Gaussian tasks, in agreement with Proposition 2, while having a
faster training time than the other convolutional models (Figure 6.2). For the sawtooth
task, Figure D.5 in Section D.8.2 illustrates that predictions by the AR ConvCNP can
be multi-modal and non-Gaussian, even when using a Gaussian likelihood. Finally, we
note that in tasks with dx = 2, where the FullConvGNP cannot be used (as discussed
in Section 6.1), the AR ConvCNP far outperforms all competing approaches.

6.4.2 Sim-to-Real Transfer with the Lotka–Volterra Equations

Predator-prey data. We next investigate sim-to-real transfer, where the models are
trained on simulated data and tested on real data. NPs are well-suited to this setting,
since a large meta-data set can be easily generated to train them. We consider the
Hudson’s Bay hare–lynx data set, which is a population time series of Snowshoe hares
and Canadian lynx (MacLulich, 1937). To generate simulated data, we use a stochastic
version of the Lotka–Volterra equations (Lotka, 1910; Volterra, 1926):

dXt = αXt dt−βYtXt dt+σXν
t dW (1)

t , dYt = −γXt dt+δYtXt dt+σY ν
t dW (2)

t . (6.9)

Under these equations, the prey population Xt grows exponentially with rate α, the
predator population Yt decays exponentially with rate γ, and the predators hunt the
prey. W (1) and W (2) are independent Brownian motions introducing noisy behaviour.
These equations generate non-Gaussian data with both within-channel as well as
cross-channel dependencies. We simulate the Lotka-Volterra equations on a dense grid,
and use them to generate meta–data sets in three different ways. Interpolation: we
randomly subsample the data into context and target sets. Forecasting: we choose
a random time, before which all data are contexts, and all future data are targets.
Reconstruction: we randomly choose between the Xt or Yt, split the chosen series as in
forecasting, and append the other series to the context. In training, for every batch,
we choose one of these tasks uniformly at random.

Results. Table 6.3 shows the results of the best performing models. The AR Con-
vCNP performs best both on the simulated as well as the real data, again demonstrating
that running CNPs in AR mode improves performance and can even outperform strong
GNP and LNP baselines. For full experimental details and additional results see
Section D.9.

6.4 Experiments and Results 97

EQ Sawtooth Mixture
KL to ground truth (↓ better) Pred. log-likelihood (↑ better) Pred. log-likelihood (↑ better)
dx, dy=1 dx, dy=2 dx, dy=1 dx, dy=2 dx, dy=1 dx, dy=2

ConvCNP 0.41 ±0.01 0.41 ±0.00 2.38±0.04 0.12 ±0.01 −0.23±0.04 −0.85 ±0.01

ConvCNP (AR) 0.01 ±0.00 0.03 ±0.00 3.60±0.01 0.38 ±0.00 0.45±0.04 −0.62 ±0.01

ConvGNP 0.01 ±0.00 0.19 ±0.00 2.62±0.05 0.26 ±0.01 −0.24±0.02 −0.74 ±0.01

FullConvGNP 0.00 ±0.00 2.16±0.04 −0.05±0.03

ConvLNP (ML) 0.25 ±0.01 0.39 ±0.00 3.06±0.04 0.31 ±0.01 −0.06±0.03 −0.78 ±0.02

ConvLNP (ELBO) 0.06 ±0.00 0.79 ±0.00 3.51±0.02 0.04 ±0.00 0.12±0.04 −0.92 ±0.01

Diagonal GP 0.40 ±0.01 0.40 ±0.00

Trivial 1.19 ±0.00 0.79 ±0.00 −0.18±0.00 −0.32 ±0.00 −1.32±0.00 −1.46 ±0.00

Table 6.2 Performance of NPs training on the GP EQ task, sawtooth task, and mixture task.
Diagonal GP denotes the exact GP predictive, but with correlations removed. Trivial denotes
a model that predicts a Gaussian distribution with the empirical means and standard deviation
of the context outputs. Significantly best models in bold. Note that the FullConvGNP cannot
be run on tasks where dx > 1.

Model Int. (S) For. (S) Rec. (S) Int. (R) For. (R) Rec. (R)

ConvCNP −3.47±0.02 −4.06±0.02 −4.85±0.02 −4.17±0.04 −4.70±0.06 −4.97±0.01
ConvCNP (AR) −3.30±0.02 −3.47±0.02 −3.60±0.02 −4.10±0.03 −4.27±0.03 −4.32±0.01
ConvGNP −3.47±0.02 −3.65±0.02 −4.15±0.02 −4.21±0.05 −4.82±0.13 −4.61±0.01
FullConvGNP −3.29±0.02 −3.46±0.02 −3.79±0.02 −4.16±0.04 −4.28±0.04 −4.45±0.00
ConvLNP (ML) −3.41±0.02 −3.84±0.02 −4.44±0.02 −4.13±0.04 −4.45±0.05 −4.54±0.01
ConvLNP (ELBO) −3.77±0.02 −3.83±0.02 −4.12±0.02 −5.45±0.05 −5.47±0.07 −6.39±0.05

Table 6.3 Normalised log-likelihoods in the predator–prey experiments, showing interpolation
(int.), forecasting (for.), and reconstruction (rec.) on simulated (S) and real (R) data.
Significantly best results in bold.

6.4.3 Electroencephalogram experiments

Electroencephalogram data. We next trained various NPs on real time series data
consisting of electroencephalogram (EEG) measurements (Zhang et al., 1995), as in
Section 5.5.3. Each time series consists of 256 regularly spaced measurements across 7
correlated channels. For each channel, we randomly select a number of the 256 points
uniformly at random to be target points, and use the remaining ones as context points,
independently across the channels.

Results. After training, we test the models on this interpolation task and also on
a reconstruction task, where we set a part of a channel as target and the remainder
as context. In Table 6.4, we observe that the AR ConvCNP is competitive with the
FullConvGNP, despite having significantly shorter training times and fewer parameters.

98 Autoregressive Neural Processes

ConvCNP ConvCNP (AR) ConvGNP FullConvGNP ConvLNP (ML) ConvLNP (ELBO)

Int. −1.02±0.01 −0.34±0.01 −0.93±0.01 −0.35±0.01 −1.04±0.01 −1.20±0.01
Rec. −2.07±0.03 −0.63±0.01 −1.45±0.03 −0.57±0.01 −1.53±0.02 −2.00±0.06

Table 6.4 Per-datapoint predictive log-likelihoods on the EEG experiments. Significantly best
results in bold.

Both the AR ConvCNP and the FullConvGNP outperform the ConvCNP and the
ConvLNP. Full experimental detail are in Section D.10.

6.4.4 Environmental Modelling

Data fusion. A ubiquitous challenge in environmental sciences is fusing spatio-
temporal data from disparate sources (Chang and Bai, 2018; Lahat et al., 2015). This
challenge, which we refer to as data fusion, arises in diverse applications including
climate monitoring (Gettelman et al., 2022), air quality estimation (Ferrer-Cid et al.,
2020), land cover mapping (Robinson et al., 2021), population estimation (Lu et al.,
2010), and hydrology (Hosseini and Kerachian, 2017). NPs naturally handle multiple
sources of both on-grid and off-grid data, and can make predictions at arbitrary
locations (Markou et al., 2022; Vaughan et al., 2022), making them particularly well
suited to data fusion.

Joint and non-Gaussian statistics. Another challenge in environmental sciences
is estimating the joint probability of events that span space and time. For example, a
renewable energy provider may want to know the compound risk of both low wind speeds
at their offshore wind farm and high cloud coverage over their solar panel farm, possibly
at different locations. For such tasks, it is essential to model statistical dependencies
to obtain well-calibrated uncertainty estimates. Furthermore, many environmental
variables, such as cloud cover, are bounded in output space and are poorly modelled by
Gaussian predictives. CNPs are most commonly applied with Gaussian likelihoods, but
can be easily used with arbitrary likelihood functions. While GAN-based approaches
(Ravuri et al., 2021) can capture both joint as well as non-Gaussian statistics, they are
unsuitable for integrating off-grid with on-grid data, as may be required for data fusion.
The AR ConvCNP thus fills a gap in the environmental modelling toolbox by enabling
data fusion while capturing statistical dependencies and working with non-Gaussian
likelihoods. Here, we assess the AR ConvCNP on two common environmental modelling
tasks, namely data assimilation and statistical downscaling.

Data assimilation. Data assimilation is the task of combining observations of the
Earth system to produce predictions on a regular grid, called a reanalysis. Reanalyses

6.4 Experiments and Results 99

are typically generated by fitting the trajectories of physics-based climate models
to observations (Gettelman et al., 2022; Hersbach et al., 2020). AR ConvCNPs can
not only provide a substantial speedup over conventional data assimilation systems,
but also permit rigorous uncertainty estimation. To explore the ability of the AR
ConvCNP to emulate a data assimilation system for a non-Gaussian variable, we train
convolutional NP models to predict simulated daily-average cloud cover fraction over
Antarctica.

We use reanalysis data from ECMWF ERA5 (Hersbach et al., 2020) as ground
truth. Cloud cover ranges in [0, 1], with observations frequently taking values of 0 or 1
(Figure D.8). We evaluate the performance of NPs using either a Gaussian likelihood
or a more appropriate beta-categorical mixture model with three components. Two of
these are discrete components that capture values of exactly 0 or 1, while the last is a
beta distribution which captures continuous values in (0, 1). This provides a robust
way of handling 0 and 1 values, unlike the existing Copula GNP model (Markou et al.,
2022) which can have its output constrained in (0, 1) but places zero density at the
endpoints.

Results. In Table 6.5 we see that the AR ConvCNP significantly outperforms
competing NPs for both the Gaussian and beta-categorical likelihoods. Figure 6.6 shows
samples drawn from the models, after observing context points on half of the space.
The AR ConvCNP displays remarkable ability to extrapolate rich, non-stationary,
multi-scale structure, such as sudden changes in cloud cover over the Ross Ice Shelf
coastline at the bottom of the figure. By comparison, the ConvLNP and ConvGNP
produce blurry, lower frequency samples. Unlike GPs, convolutional NP models have
a fixed receptive field induced by the CNN architecture used for the encoder, which
is computationally expensive to increase. Away from the context points on the left,
samples from the non-AR models will be independent of the observations, reverting to
some mean representation of the data (Fig. 6.6c-e). This highlights a further benefit
of AR CNPs: successive AR applications increase the receptive field, enabling rich,
conditional sample structure to extrapolate far away from observed data. Further
commentary and model samples are provided in Section D.11.3. See Section D.11 for
full details.

Environmental downscaling. The spatial resolutions of physics-based reanalyses
are limited by their vast computational demands, making them unsuitable for capturing
local and extreme events (Maraun et al., 2017; Stocker et al., 2013). Statistical
downscaling addresses this issue by leveraging additional information to produce fine-
grained predictions (Maraun and Widmann, 2018b). Recently, NPs have been shown to

100 Autoregressive Neural Processes

Gaussian Beta-Categorical
ConvGNP ConvLNP (ML) ConvCNP ConvCNP (AR) ConvLNP (ML) ConvCNP ConvCNP (AR)

Log-lik. 0.60±0.02 0.62±0.02 0.58±0.02 0.88±0.02 1.06±0.02 1.03±0.02 1.27±0.02
MAE (%) 13.05±0.17 12.98±0.16 13.01±0.16 13.01±0.16 12.99±0.16 13.13±0.16 13.13±0.16

Table 6.5 Log-likelihoods (log-lik.) and mean absolute errors (MAE, in units of cloud cover %),
over the 2019-2019 test period for the cloud cover task. Note that log-likelihoods cannot be
compared directly across the Gaussian and beta-categorical models. Errors indicate standard
errors. Significantly best results in bold.

Fig. 6.6 (a) Ground truth simulated cloud cover fraction on 25/06/2018. (b-e), Sample draws
from the AR ConvCNP, ConvCNP, ConvLNP and ConvGNP with context points denoted by
red dots. Context points were removed from the right hand side of the 2D space to test the
models’ abilities to extrapolate coherent function samples far away from observations. The
ConvCNP and ConvLNP models used a beta-categorical likelihood while the ConvGNP uses
a low-rank Gaussian likelihood.

outperform a large ensemble of existing climate downscaling approaches (Vaughan et al.,
2022). We compare the AR ConvCNP to the MLP ConvCNP of Vaughan et al. and
the MLP ConvGNP from Chapter 5 in a temperature downscaling task over Germany.
In this task, the context data consist of low-resolution ERA-Interim reanalysis data and
high-resolution topography, and the target data consist of weather station observations
from the ECA&D dataset. We also consider a second setup where we reveal some
station observations to aid the downscaling process. As Section D.12.2 explains, the
MLP ConvCNP and MLP ConvGNP cannot be naively extended to include these
station observations. We therefore introduce a novel multiscale architecture, which we
use to run the ConvCNP in AR mode. See Section D.12 for full experimental details.

Results. In Table 6.6 we observe that the AR ConvCNP matches the performance
of the ConvGNP, which is remarkable as the latter has been previously demonstrated
to outperform a range of state-of-the-art downscaling approaches (Markou et al., 2022;
Vaughan et al., 2022). When additional observations from weather stations are revealed,
the AR ConvCNP significantly outperforms the MLP ConvGNP in both metrics.

6.5 Conclusion and Discussion 101

Downscaling Log-lik. MAE (◦C)

ConvCNP (MLP) −1.55±0.01 0.94±0.03
ConvGNP (MLP) −1.36±0.01 1.09±0.09
ConvCNP (AR) −1.36±0.01 1.04±0.04

Down. + stations Log-lik. MAE (◦C)

ConvCNP∗ (MLP) −1.55±0.01 0.94±0.03
ConvGNP∗ (MLP) −1.38±0.01 1.09±0.09
ConvCNP (AR) −1.31±0.01 0.85±0.05

Table 6.6 Log-likelihoods and mean absolute errors (MAEs) in the downscaling experiments,
without (left) and with (right) assisting weather station observations. Significantly best
results in bold. ∗Cannot use extra weather station observations.

6.5 Conclusion and Discussion

In this chapter we investigate the AR CNP, a simple change to how standard CNPs
are deployed at test time, without any modifications to the model or training procedure.
Instead of making predictions independently for every target point as with standard
CNPs, AR CNPs define a joint predictive distribution using the chain rule of probability,
taking inspiration from the neural autoregressive density estimator (NADE) literature.
We have shown that applying this AR procedure generally improves the performance of
CNPs, producing coherent samples and dramatically improved likelihoods. Surprisingly,
in an extensive range of experiments, this simple approach often outperforms more
complicated methods which rely on latent variables or that explicitly model correlations.
In this chapter, we demonstrated the effectiveness of this approach on the climate data
fusion tasks, modelling [0, 1]-constrained data with a beta-categorical likelihood and
introducing a novel multiscale architecture. Notably, AR CNPs fill a gap in the climate
modelling toolbox by enabling joint, non-Gaussian predictives, which could be used to
better estimate the magnitude of compound risks. We also position AR CNPs within
the larger neural density estimator literature, showing the fruitfulness of combining
NPs with other modelling paradigms.

More generally, AR CNPs equip the NP framework with a new knob where modelling
complexity and computational expense at training time can be traded for computational
expense at test time. In particular, the higher quality samples and better likelihoods
obtained by applying NPs autoregressively come with the additional cost of performing
a forward pass for every element in the target set. This can be prohibitively expensive
for large target sets, and constitutes the primary practical drawback of using AR CNPs.
In addition, since AR CNPs do not define a consistent stochastic process, design choices

102 Autoregressive Neural Processes

for the AR procedure may affect the quality of the results. Thus practitioners need to
avoid choosing target sets that lead to pathological behaviour, such as when the spatial
density of the target inputs is too high. However, the flexibility of this design space
also presents an opportunity: as an example, in Section D.13 we show that auxiliary
target points can be used to further improve predictions. Finally, promising avenues
for future work include applying the AR procedure to other NPs besides CNPs, and
investigating the efficacy of the block sampling scheme discussed in Section 6.2.

Chapter 7

Conclusion and Discussion

In the final chapter, we summarize the main contributions presented in this thesis. We
conclude with a discussion on some open questions and future research directions in
the neural process family of models.

7.1 Summary of Contributions

The main motivation for this thesis is to develop methods to address two shortcomings
of the neural process family of models with the aim of making them more applicable
to real-world problems. First, previous to the work in this thesis, neural processes
had to learn translation equivariance directly from data as this inductive bias was
not an assumption built directly into the models. Second, parametrizing a rich
predictive distribution was challenging as CNPs only produced mean-field predictions
modelling each target location independently. Although LNPs do not have this
restrictive modelling assumption, they are more expensive and difficult to train requiring
approximate inference.

In chapter 3, we introduced the convolutional conditional neural process. The
ConvCNP incorporated translation equivariance into its modelling assumptions through
the use of the ConvDeepSet, an important building block for neural process architectures
moving forward. Using convolutional neural networks (Cohen and Welling, 2016; LeCun
et al., 1998), ConvDeepSets extend standard DeepSets to be translation equivariant
and we provide a representation theorem for translation-equivariant functions on sets,
extending a key result of Zaheer et al. (2017b) to functional embeddings, including
sets of varying size. We demonstrate that in cases where data are approximately
translation equivariant the ConvCNP outperforms contemporary neural processes
models on synthetic and real-world tasks.

104 Conclusion and Discussion

Building on the results of the chapter 3, in chapter 4 we introduce the convolutional
latent neural process, a latent variable counterpart to the ConvCNP that is able
to model epistemic uncertainty and produce coherent function samples, important
for many downstream estimation tasks. Unlike previous LNPs which use a finite-
dimensional latent vector, the ConvLNP uses a latent function to model task specific
information and capture epistemic uncertainty. To overcome some of the challenges
with training latent variable models, we propose an approximate maximum likelihood
alternative to the standard variational inference approach used for LNPs. We show
that we achieve improved performance using our objective. We demonstrate the
usefulness of ConvLNPs on synthetic time-series experiments, image-based sampling
and extrapolation, and real-world environmental data sets.

In chapter 5, we introduce the Gaussian neural process which can model joint
output-space dependencies, like the ConvLNP, but can avoid the issues associated
with using the latent variable present in LNPs. GNPs can be trained using the same
maximum likelihood technique used by standard CNPs. This chapter also introduces
the idea of composing GNPs with invertible marginal transformations to go beyond
the Gaussian predictive distribution assumption. We demonstrate that modelling
correlations with the GNP improves performance on experiments with both Gaussian
and non-Gaussian synthetic and real-world data, including a downstream estimation
task that mean-field models cannot solve. We also show that GNPs outperform a
standard ensemble of widely used methods in a statistical downscaling climate science
application.

Lastly, in chapter 6 we take inspiration from the neural distribution estimation
literature (Uria et al., 2016) and, rather than designing a new neural process architec-
ture for modelling dependencies in output variables as we did in previous chapters, we
propose evaluating existing models autoregressively via the product rule of probabil-
ity. This method allows us to use existing, potentially already trained NPs such as
standard CNPs to model non-Gaussian predictive distributions and produce coherent
samples. This is despite the fact that the CNPs used have Gaussian likelihoods, are
not trained to model joint dependencies, and are significantly cheaper to train than
LNPs and FullConvGNPs. We prove that given sufficient data and model capacity,
the performance of AR CNPs is at least as good as that of GNPs. In this chapter, we
propose that neural processes should be viewed as a type of neural density estimator
(Uria et al., 2016) highlighting their connections to a range of existing methods in
the deep generative modelling literature. We deploy AR CNPs on a range of tasks
involving real-world climate data and show that AR CNPs are consistently competitive

7.2 Future Work 105

with, and often significantly outperform, all other neural process models in terms of
predictive log-likelihood.

As should be evident from our experimentation, there is no one neural process model
that is universally better than all others for every application. As seen in Table 6.1,
each member has its own set of tradeoffs. Instead, the contributions contained within
this thesis should be viewed as set of tools. They should be used by practitioners when
best suited to their applications. The tools that were introduced are

• incorporating translation equvariance and/or the use of infinite latent variables
through the use of ConvDeepSets;

• using the Gaussian neural process construction to parametrize joint Gaussian
predictive distributions via mean and kernel NPs;

• applying invertible marginal transformations to go beyond the Gaussian predictive
distribution assumption;

• and an autoregressive application of standard neural process models for modelling
dependencies "out of the box."

These tools can be added to the already existing set of tools in the neural process
family such as conditional vs latent variable NPs, attention mechanisms and the array
of neural network architecture decisions present in all deep learning frameworks. These
tools can also be modularly composed to take advantage of particular aspects of each
tool, as was the case when combining ConvCNPs with GNPs to yield the ConvGNP
to achieve a translation equivariant neural process capable of modelling full covariance
structures. Figure 7.1 shows visualization of the members of the neural process family
considered in this thesis including those proposed.

7.2 Future Work

For real-world applications as well as more generally, the bespoke software used by NP
researchers can be difficult for practitioners to use out-of-the-box. The creation and
refinement of NP software where models can be easily and modularly constructed from
simple components encourage practitioners to use CNPs for their applications. We
have made strides towards developing some of these tools in the code presented in this
thesis, but there is still a lot of work to be done in this area as using it still requires a
level of expertise in neural processes.

106 Conclusion and Discussion

Fig. 7.1 A visualization of the members of the neural process family considered in this thesis.
The vertical axis indicates whether the NP produces a mean-field distribution or is able to
model a Gaussian or non-Gaussian predictive distribution. The horizontal axis indicates
whether TE is incorporated into the NP. The axis going into the page indicates whether
the NP models the latent variable distribution p(z |D(c)) using a point estimate, a Gaussian
distribution, or a variable-sized Gaussian via a ConvDeepSet. Green nodes indicate models
presented in this thesis.

Unfortunately, as observed in our experimentation, there is no one best neural
processes model for all applications. This puts the burden of choice back onto the user,
something machine learning and meta-learning are aiming to alleviate by automating
decision making. Development of an AutoML framework for neural processes such
as Auto-Sklearn (Feurer et al., 2020) or AutoPyTorch (Zimmer et al., 2021) to help
automate model selection would go a long way toward making to making neural
processes more accessible to non-machine learning researchers.

There are many longer term research directions in the area of AR CNPs such as
using AR CNPs as inference models in VAEs, allowing for infinite-dimensional latent
spaces, developing architectures that guarantee consistency in AR mode (Korshunova
et al., 2020), and developing new connections to the growing literature in diffusion
models (Ho et al., 2020). Section D.13 proposed a promising procedure using autore-
gressive sampling with auxiliary data to generate more expressive marginal predictive
distributions. These results also suggests a Gibbs sampling procedure where targets
and auxiliary points are sampled repeatedly may produce better results. As we saw in
Chapter 6, AR CNP sampling is slow. There is still work to be done investigating the

7.2 Future Work 107

efficacy of the block sampling scheme discussed in Section 6.2. Techniques proposed in
the broader AR modelling literature for speeding up sampling (Ramachandran et al.,
2017) could potentially be applied to AR CNPs as well.

Lastly, Figure 6.5 illustrated connections between neural processes and other models
in the neural distribution estimator literature (Uria et al., 2016) and there are regions
on this landscape that are still unexplored, such as a connections between GANs and
NPs.

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat,
S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray,
D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y.,
and Zheng, X. (2016). TensorFlow: A system for large-scale machine learning. In
USENIX Symposium on Operating Systems Design and Implementation, volume 12,
pages 265–283.

Alcorn, M. A. and Nguyen, A. (2021). The deformer: An order-agnostic distribution
estimating transformer. arXiv preprint arXiv:2106.06989.

Alet, F., Schneider, M. F., Lozano-Perez, T., and Kaelbling, L. P. (2020). Meta-learning
curiosity algorithms. arXiv preprint arXiv:2003.05325.

Allam Jr, T., Bahmanyar, A., Biswas, R., Dai, M., Galbany, L., Hložek, R., Ishida,
E. E., Jha, S. W., Jones, D. O., Kessler, R., et al. (2018). The photometric lsst
astronomical time-series classification challenge (plasticc): Data set. arXiv preprint
arXiv:1810.00001.

Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. (2016). Climate
change 2013: the physical science basis. contribution of working group i to the fifth
assessment report of the intergovernmental panel on climate change.

Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein generative adversarial
networks. In Proceedings of the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research, pages 214–223. PMLR.

Arnold, V. I. (1992). Ordinary Differential Equations. Springer-Verlag Berlin Heidel-
berg.

Aronszajn, N. (1950). Theory of reproducing kernels. Transactions of the American
mathematical society, 68(3):337–404.

Ashman, M., So, J., Tebbutt, W., Fortuin, V., Pearce, M., and Turner, R. E. (2020).
Sparse gaussian process variational autoencoders. arXiv preprint arXiv:2010.10177.

Auer, P. (2002). Using confidence bounds for exploitation-exploration trade-offs.
Journal of Machine Learning Research, 3(Nov):397–422.

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. arXiv preprint
arXiv:1607.06450.

110 References

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473.

Baño-Medina, J., Manzanas, R., and Gutiérrez, J. M. (2020). Configuration and inter-
comparison of deep learning neural models for statistical downscaling. Geoscientific
Model Development, 13(4):2109–2124.

Begleiter, H. (2022). EEG database data set.

Behrmann, J., Grathwohl, W., Chen, R. T. Q., Duvenaud, D., and Jacobsen, J.-H.
(2018). Invertible residual networks. arXiv preprint arXiv:1811.00995.

Bhardwaj, A., Misra, V., Mishra, A., Wootten, A., Boyles, R., Bowden, J., and Terando,
A. J. (2018). Downscaling future climate change projections over puerto rico using a
non-hydrostatic atmospheric model. Climatic Change, 147(1-2):133–147.

Biggs, J. B. (1985). The role of metalearning in study processes. British journal of
educational psychology, 55(3):185–212.

Bloem-Reddy, B. and Teh, Y. W. (2020). Probabilistic symmetries and invariant neural
networks. Journal of Machine Learning Research, 21(90):1–61.

Boone, K. (2019). Avocado: Photometric classification of astronomical transients with
gaussian process augmentation. arXiv preprint arXiv:1907.04690.

Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent. In
Proceedings of COMPSTAT’2010, pages 177–186. Springer.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D.,
Necula, G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., and Zhang, Q. (2018).
JAX: composable transformations of Python+NumPy programs.

Brock, A., Donahue, J., and Simonyan, K. (2018). Large scale gan training for high
fidelity natural image synthesis. arXiv preprint arXiv:1809.11096.

Bruinsma, W., Perim, E., Tebbutt, W., Hosking, S., Solin, A., and Turner, R. (2020).
Scalable exact inference in multi-output gaussian processes. In International Confer-
ence on Machine Learning, pages 1190–1201. PMLR.

Bruinsma, W. P., Requeima, J., Foong, A. Y. K., Gordon, J., and Turner, R. E. (2021).
The Gaussian neural process. In Proceedings of the 3rd Symposium on Advances in
Approximate Bayesian Inference.

Burda, Y., Grosse, R., and Salakhutdinov, R. (2015). Importance weighted autoen-
coders. arXiv preprint arXiv:1509.00519.

Calandra, R., Peters, J., Rasmussen, C. E., and Deisenroth, M. P. (2016). Manifold
gaussian processes for regression.

Chang, N.-B. and Bai, K. (2018). Multisensor data fusion and machine learning for
environmental remote sensing. CRC Press.

References 111

Chen, R. T., Behrmann, J., Duvenaud, D. K., and Jacobsen, J.-H. (2019). Residual
flows for invertible generative modeling. Advances in Neural Information Processing
Systems, 32.

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., and Abbeel, P. (2016a).
Infogan: Interpretable representation learning by information maximizing generative
adversarial nets. arXiv preprint arXiv:1606.03657.

Chen, X., Kingma, D. P., Salimans, T., Duan, Y., Dhariwal, P., Schulman, J.,
Sutskever, I., and Abbeel, P. (2016b). Variational lossy autoencoder. arXiv preprint
arXiv:1611.02731.

Chen, X., Mishra, N., Rohaninejad, M., and Abbeel, P. (2018). Pixelsnail: An improved
autoregressive generative model. In International Conference on Machine Learning,
pages 864–872. PMLR.

Child, R. (2020). Very deep vaes generalize autoregressive models and can outperform
them on images. arXiv preprint arXiv:2011.10650.

Child, R., Gray, S., Radford, A., and Sutskever, I. (2019). Generating long sequences
with sparse transformers. arXiv preprint arXiv:1904.10509.

Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition.

Cohen, T., Weiler, M., Kicanaoglu, B., and Welling, M. (2019). Gauge equivariant con-
volutional networks and the icosahedral CNN. In Chaudhuri, K. and Salakhutdinov,
R., editors, Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pages 1321–1330, Long
Beach, California, USA. PMLR.

Cohen, T. and Welling, M. (2016). Group equivariant convolutional networks. In
Balcan, M. F. and Weinberger, K. Q., editors, Proceedings of The 33rd International
Conference on Machine Learning, volume 48 of Proceedings of Machine Learning
Research, pages 2990–2999, New York, New York, USA. PMLR.

Cremer, C., Li, X., and Duvenaud, D. (2018). Inference suboptimality in variational
autoencoders. arXiv preprint arXiv:1801.03558.

Cressie, N. (1990). The origins of kriging. Mathematical geology, 22(3):239–252.

De Finetti, B. (1937). La prévision: ses lois logiques, ses sources subjectives. In Annales
de l’institut Henri Poincaré, volume 7, pages 1–68.

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S.,
Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A.
C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes,
M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Holm, E. V., Isaksen,
L., Kållberg, P., Kohler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M.,
Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thepaut, J.-N.,

112 References

and Vitart, F. (2011). The ERA-interim reanalysis: Configuration and performance
of the data assimilation system. Quarterly Journal of the Royal Meteorological
Society, 137(656):553–597.

DeGeneres, E. (2014). If only Bradley’s arm was longer. Best photo ever. Oscars
pic.twitter.com/c9u5notgap.

Delhomme, J. P. (1978). Kriging in the hydrosciences. Advances in water resources,
1:251–266.

Dieng, A. B., Ruiz, F. J., Blei, D. M., and Titsias, M. K. (2019). Prescribed generative
adversarial networks. arXiv preprint arXiv:1910.04302.

Dinh, L., Krueger, D., and Bengio, Y. (2014). Nice: Non-linear independent components
estimation.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2016). Density estimation using real NVP.
arXiv preprint arXiv:1605.08803.

Domingos, P. (2012). A few useful things to know about machine learning. Communi-
cations of the ACM, 55(10):78–87.

Dugundji, J. et al. (1951). An extension of tietze’s theorem. Pacific Journal of
Mathematics, 1(3):353–367.

Durkan, C., Bekasov, A., Murray, I., and Papamakarios, G. (2019). Neural spline flows.

Durrett, R. (2010). Probability: Theory and Examples. Cambridge University Press, 4
edition.

Earth Resources Observation and Science Center, U.S. Geological Survey, U.S. Depart-
ment of the Interior (1997). USGS 30 arc-second global elevation data, GTOPO30.

Elidan, G. (2013). Copulas in machine learning. In Jaworski, P., Durante, F., and
Härdle, W. K., editors, Copulae in Mathematical and Quantitative Finance, pages
39–60, Berlin, Heidelberg. Springer Berlin Heidelberg.

Ellison, A. M. (1987). Effect of seed dimorphism on the density-dependent dynamics
of experimental populations of atriplex triangularis (chenopodiaceae). American
Journal of Botany, 74(8):1280–1288.

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and
Taylor, K. E. (2016). Overview of the coupled model intercomparison project phase
6 (cmip6) experimental design and organization. Geoscientific Model Development,
9(5):1937–1958.

Ferrer-Cid, P., Barcelo-Ordinas, J. M., Garcia-Vidal, J., Ripoll, A., and Viana, M.
(2020). Multisensor data fusion calibration in iot air pollution platforms. IEEE
Internet of Things Journal, 7(4):3124–3132.

Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M., and Hutter, F. (2020). Auto-
sklearn 2.0: Hands-free automl via meta-learning. arXiv:2007.04074 [cs.LG].

References 113

Finn, C., Abbeel, P., and Levine, S. (2017). Model-agnostic meta-learning for fast
adaptation of deep networks. In Proceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages
1126–1135. PMLR.

Foong, A. Y. K., Bruinsma, W. P., Gordon, J., Dubois, Y., Requeima, J., and
Turner, R. E. (2020). Meta-learning stationary stochastic process prediction with
convolutional neural processes. In Advances in Neural Information Processing
Systems 33. Curran Associates, Inc.

Fortuin, V., Baranchuk, D., Rätsch, G., and Mandt, S. (2020). Gp-vae: Deep proba-
bilistic time series imputation. In International conference on artificial intelligence
and statistics, pages 1651–1661. PMLR.

Franceschi, L., Frasconi, P., Salzo, S., Grazzi, R., and Pontil, M. (2018). Bilevel
programming for hyperparameter optimization and meta-learning. In International
Conference on Machine Learning, pages 1568–1577. PMLR.

Garnelo, M., Rosenbaum, D., Maddison, C. J., Ramalho, T., Saxton, D., Shanahan,
M., Teh, Y. W., Rezende, D. J., and Eslami, S. M. A. (2018a). Conditional neural
processes. In Proceedings of 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research. PMLR.

Garnelo, M., Schwarz, J., Rosenbaum, D., Viola, F., Rezende, D. J., Eslami, S. M. A.,
and Teh, Y. W. (2018b). Neural processes. In Proceedings of 35th International
Conference on Machine Learning.

Germain, M., Gregor, K., Murray, I., and Larochelle, H. (2015). Made: Masked
autoencoder for distribution estimation. In International conference on machine
learning, pages 881–889. PMLR.

Gettelman, A., Geer, A. J., Forbes, R. M., Carmichael, G. R., Feingold, G., Posselt,
D. J., Stephens, G. L., van den Heever, S. C., Varble, A. C., and Zuidema, P. (2022).
The future of earth system prediction: Advances in model-data fusion. Science
Advances, 8(14):eabn3488.

Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. The
journal of physical chemistry, 81(25):2340–2361.

Gneiting, T. and Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and
estimation. Journal of the American statistical Association, 102(477):359–378.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.

Goodfellow, I. J., Abadie, J. P., Mirza, M., Xu, B., Farley, D. W., Ozair, S., Courville,
A., and Bengio, Y. (2014). Generative adversarial networks. arXiv preprint
arXiv:1406.2661.

Gordon, J., Bronskill, J., Bauer, M., Nowozin, S., and Turner, R. (2019). Meta-learning
probabilistic inference for prediction. In International Conference on Learning
Representations.

114 References

Gordon, J., Bruinsma, W. P., Foong, A. Y. K., Requeima, J., Dubois, Y., and Turner,
R. E. (2020). Convolutional conditional neural processes. In Proceedings of the 8th
International Conference on Learning Representations.

Grathwohl, W., Chen, R. T., Bettencourt, J., Sutskever, I., and Duvenaud, D. (2018).
Ffjord: Free-form continuous dynamics for scalable reversible generative models.
arXiv preprint arXiv:1810.01367.

Grover, A., Dhar, M., and Ermon, S. (2018). Flow-gan: Combining maximum likelihood
and adversarial learning in generative models. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 32.

Gulrajani, I., Kumar, K., Ahmed, F., Taiga, A. A., Visin, F., Vazquez, D., and
Courville, A. (2016). Pixelvae: A latent variable model for natural images. arXiv
preprint arXiv:1611.05013.

Harlow, H. F. (1949). The formation of learning sets. Psychological review, 56(1):51.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J.,
Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla,
S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M.,
De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J.,
Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Holm, E.,
Janiskova, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay,
P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N. (2020). The ERA5
global reanalysis. 146(730):1999–2049.

Ho, J., Chen, X., Srinivas, A., Duan, Y., and Abbeel, P. (2019). Flow++: Improving
flow-based generative models with variational dequantization and architecture design.
In International Conference on Machine Learning, pages 2722–2730. PMLR.

Ho, J., Jain, A., and Abbeel, P. (2020). Denoising diffusion probabilistic models.
Advances in Neural Information Processing Systems, 33:6840–6851.

Hoogeboom, E., Gritsenko, A. A., Bastings, J., Poole, B., Berg, R. v. d., and Salimans,
T. (2021). Autoregressive diffusion models. arXiv preprint arXiv:2110.02037.

Hospedales, T., Antoniou, A., Micaelli, P., and Storkey, A. (2021). Meta-learning in
neural networks: A survey. IEEE transactions on pattern analysis and machine
intelligence, 44(9):5149–5169.

Hosseini, M. and Kerachian, R. (2017). A data fusion-based methodology for optimal
redesign of groundwater monitoring networks. Journal of Hydrology, 552:267–282.

Huang, C.-W., Krueger, D., Lacoste, A., and Courville, A. (2018). Neural autoregressive
flows. In International Conference on Machine Learning, pages 2078–2087. PMLR.

Hundley, D. R. (2022). Introduction to mathematical modelling.

References 115

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In International Conference on Machine
Learning, pages 448–456.

Jaimungal, S. and Ng, E. K. (2009). Kernel-based copula processes. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases, pages
628–643. Springer.

Jetchev, N., Bergmann, U., and Vollgraf, R. (2016). Texture synthesis with spatial
generative adversarial networks. arXiv preprint arXiv:1611.08207.

Karras, T., Laine, S., and Aila, T. (2019). A style-based generator architecture for
generative adversarial networks. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 4401–4410.

Kim, H., Mnih, A., Schwarz, J., Garnelo, M., Eslami, A., Rosenbaum, D., Vinyals,
O., and Teh, Y. W. (2019). Attentive neural processes. In Proceedings of the 7th
International Conference on Learning Representations.

Kingma, D. P. and Ba, J. (2015). ADAM: A method for stochastic optimization. In
Proceedings of the 3rd International Conference on Learning Representations.

Kingma, D. P. and Dhariwal, P. (2018). Glow: Generative flow with invertible 1x1
convolutions. Advances in neural information processing systems, 31.

Kingma, D. P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., and Welling,
M. (2016). Improving variational inference with inverse autoregressive flow. arXiv
preprint arXiv:1606.04934.

Kingma, D. P. and Welling, M. (2014). Auto-encoding variational Bayes. In Proceedings
of the International Conference on Learning Representations (ICLR).

Klein Tank, A., Wijngaard, J., Können, G., Böhm, R., Demarée, G., Gocheva, A.,
Mileta, M., Pashiardis, S., Hejkrlik, L., Kern-Hansen, C., et al. (2002). Daily dataset
of 20th-century surface air temperature and precipitation series for the european
climate assessment. International Journal of Climatology: A Journal of the Royal
Meteorological Society, 22(12):1441–1453.

Knutsson, H. and Westin, C.-F. (1993). Normalized and differential convolution. In
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages
515–523. IEEE.

Kobyzev, I., Prince, S., and Brubaker, M. (2020). Normalizing flows: An introduction
and review of current methods. IEEE Transactions on Pattern Analysis and Machine
Intelligence.

Kondor, I. R. (2008). Group theoretical methods in machine learning. Columbia
University.

116 References

Kondor, R. and Trivedi, S. (2018). On the generalization of equivariance and convolution
in neural networks to the action of compact groups. In Dy, J. and Krause, A., editors,
Proceedings of the 35th International Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pages 2747–2755, Stockholmsmässan,
Stockholm Sweden. PMLR.

Korshunova, I., Gal, Y., Gretton, A., and Dambre, J. (2020). Conditional bruno: A
neural process for exchangeable labelled data. Neurocomputing, 416:305–309.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. In Pereira, F., Burges, C. J. C., Bottou, L., and
Weinberger, K. Q., editors, Advances in Neural Information Processing Systems 25,
pages 1097–1105.

Lahat, D., Adali, T., and Jutten, C. (2015). Multimodal data fusion: an overview of
methods, challenges, and prospects. Proceedings of the IEEE, 103(9):1449–1477.

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B. (2015). Human-level concept
learning through probabilistic program induction. Science, 350(6266):1332–1338.

Le, T. A., Kim, H., Garnelo, M., Rosenbaum, D., Schwarz, J., and Teh, Y. W. (2018).
Empirical evaluation of neural process objectives. In NeurIPS workshop on Bayesian
Deep Learning.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and
Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition.
Neural computation, 1(4):541–551.

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

Leigh, E. R. (1968). The ecological role of volterra’s equations. Some mathematical
problems in biology.

Liu, H., Simonyan, K., and Yang, Y. (2018a). Darts: Differentiable architecture search.
arXiv preprint arXiv:1806.09055.

Liu, Y., Ganguly, A. R., and Dy, J. (2020). Climate downscaling using ynet: A deep
convolutional network with skip connections and fusion. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pages 3145–3153.

Liu, Z., Luo, P., Wang, X., and Tang, X. (2018b). Large-scale celebfaces attributes
(celeba) dataset. Retrieved August, 15:2018.

Lotka, A. J. (1910). Contribution to the theory of periodic reactions. The Journal of
Physical Chemistry, 14(3):271–274.

Louizos, C., Shi, X., Schutte, K., and Welling, M. (2019). The functional neural process.
Advances in Neural Information Processing Systems, 32.

References 117

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. Interna-
tional journal of computer vision, 60(2):91–110.

Lu, C., Turner, R. E., Li, Y., and Kushman, N. (2020). Interpreting spatially infinite
generative models. arXiv preprint arXiv:2007.12411.

Lu, Z., Im, J., Quackenbush, L., and Halligan, K. (2010). Population estimation based
on multi-sensor data fusion. International Journal of Remote Sensing, 31(21):5587–
5604.

MacLulich, D. A. (1937). Fluctuations in the Numbers of the Varying Hare (Lepus
Americanus). University of Toronto Press.

Maraun, D., Shepherd, T. G., Widmann, M., Zappa, G., Walton, D., Gutiérrez, J. M.,
Hagemann, S., Richter, I., Soares, P. M. M., Hall, A., and Mearns, L. O. (2017).
Towards process-informed bias correction of climate change simulations. Nature
Climate Change, 7(11):764–773.

Maraun, D. and Widmann, M. (2018a). Statistical downscaling and bias correction for
climate research. Cambridge University Press.

Maraun, D. and Widmann, M. (2018b). Statistical Downscaling and Bias Correction
for Climate Research. Cambridge Uiversity Press.

Maraun, D., Widmann, M., Gutiérrez, J. M., Kotlarski, S., Chandler, R. E., Hertig, E.,
Wibig, J., Huth, R., and Wilcke, R. A. I. (2015). VALUE: A framework to validate
downscaling approaches for climate change studies. Earth’s Future, 3(1):1–14.

Markou, S., Requeima, J., Bruinsma, W. P., and Turner, R. E. (2021). Efficient
Gaussian neural processes for regression. In Proceedings of 39th International
Conference on Machine Learning.

Markou, S., Requeima, J., Bruinsma, W. P., Vaughan, A., and Turner, R. E. (2022).
Practical conditional neural processes via tractable dependent predictions. In Pro-
ceedings of the 10th International Conference on Learning Representations.

Maroñas, J., Hamelijnck, O., Knoblauch, J., and Damoulas, T. (2021). Transforming
gaussian processes with normalizing flows. In International Conference on Artificial
Intelligence and Statistics, pages 1081–1089. PMLR.

Matthews, A. G. d. G., Hensman, J., Turner, R., and Ghahramani, Z. (2016). On
sparse variational methods and the Kullback-Leibler divergence between stochastic
processes. In Artificial Intelligence and Statistics, pages 231–239.

Menick, J. and Kalchbrenner, N. (2018). Generating high fidelity images with subscale
pixel networks and multidimensional upscaling. arXiv preprint arXiv:1812.01608.

Metz, L., Maheswaranathan, N., Cheung, B., and Sohl-Dickstein, J. (2018). Meta-
learning update rules for unsupervised representation learning. arXiv preprint
arXiv:1804.00222.

118 References

Minka, T. P. (2001). Expectation propagation for approximate Bayesian inference.
volume 17, pages 362–369. Morgan Kaufmann Publishers Inc.

Misra, S., Sarkar, S., and Mitra, P. (2018). Statistical downscaling of precipitation
using long short-term memory recurrent neural networks. Theoretical and applied
climatology, 134(3):1179–1196.

Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. (2018). Spectral normalization
for generative adversarial networks. arXiv preprint arXiv:1802.05957.

Morlighem, M. (2020). Measures bedmachine antarctica, version 2.

Munkres, J. (1974). Topology; a First Course. Prentice-Hall.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng, A. Y. (2011). Reading
digits in natural images with unsupervised feature learning. In NIPS Workshop on
Deep Learning and Unsupervised Feature Learning.

Nguyen, T. and Grover, A. (2022). Transformer neural processes: Uncertainty-aware
meta learning via sequence modeling. In International Conference on Machine
Learning, pages 16569–16594. PMLR.

Odena, A., Dumoulin, V., and Olah, C. (2016). Deconvolution and Checkerboard
Artifacts. Distill, 1(10):e3.

Oksendal, B. (2013). Stochastic differential equations: an introduction with applications.
Springer Science & Business Media.

Oord, A. v. d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalch-
brenner, N., Senior, A., and Kavukcuoglu, K. (2016a). Wavenet: A generative model
for raw audio. arXiv preprint arXiv:1609.03499.

Oord, A. v. d., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves, A., et al. (2016b).
Conditional image generation with pixelcnn decoders. Advances in neural information
processing systems, 29.

Oord, A. v. d., Vinyals, O., et al. (2017). Neural discrete representation learning.
Advances in neural information processing systems, 30.

Pan, B., Hsu, K., AghaKouchak, A., and Sorooshian, S. (2019). Improving precipitation
estimation using convolutional neural network. Water Resources Research, 55(3):2301–
2321.

Papamakarios, G. and Murray, I. (2016). Fast ϵ-free inference of simulation models with
bayesian conditional density estimation. In Lee, D. D., Sugiyama, M., Luxburg, U. V.,
Guyon, I., and Garnett, R., editors, Advances in Neural Information Processing
Systems 29, pages 1028–1036.

Parmar, N., Vaswani, A., Uszkoreit, J., Kaiser, L., Shazeer, N., Ku, A., and Tran, D.
(2018). Image transformer. In Dy, J. and Krause, A., editors, Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 4055–4064, Stockholmsmässan, Stockholm Sweden. PMLR.

References 119

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison,
A., Antiga, L., and Lerer, A. (2017). Automatic differentiation in pytorch. In NIPS-
W.

Patacchiola, M., Turner, J., Crowley, E. J., and Storkey, A. J. (2019). Deep kernel
transfer in gaussian processes for few-shot learning. CoRR, abs/1910.05199.

Perez, E., Strub, F., De Vries, H., Dumoulin, V., and Courville, A. (2018). FiLM: Visual
reasoning with a general conditioning layer. In Thirty-Second AAAI Conference on
Artificial Intelligence.

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2017a). Pointnet: Deep learning on point
sets for 3d classification and segmentation. Proc. Computer Vision and Pattern
Recognition (CVPR), IEEE, 1(2):4.

Qi, C. R., Yi, L., Su, H., and Guibas, L. J. (2017b). Pointnet++: Deep hierarchical
feature learning on point sets in a metric space. In Advances in neural information
processing systems, pages 5099–5108.

Radford, A., Metz, L., and Chintala, S. (2016). Unsupervised representation learn-
ing with deep convolutional generative adversarial networks. In 4th International
Conference on Learning Representations (ICLR-16).

Ramachandran, P., Paine, T. L., Khorrami, P., Babaeizadeh, M., Chang, S., Zhang,
Y., Hasegawa-Johnson, M. A., Campbell, R. H., and Huang, T. S. (2017). Fast
generation for convolutional autoregressive models. arXiv preprint arXiv:1704.06001.

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine
Learning. MIT Press.

Ravi, S. and Larochelle, H. (2017). Optimization as a model for few-shot learning. In
Proceedings of the 5th International Conference on Learning Representations.

Ravuri, S., Lenc, K., Willson, M., Kangin, D., Lam, R., Mirowski, P., Fitzsimons, M.,
Athanassiadou, M., Kashem, S., Madge, S., Prudden, R., Mandhane, A., Clark, A.,
Brock, A., Simonyan, K., Hadsell, R., Robinson, N., Clancy, E., Arribas, A., and
Mohamed, S. (2021). Skilful precipitation nowcasting using deep generative models
of radar. Nature, 597(7878):672–677. Number: 7878 Publisher: Nature Publishing
Group.

Rebuffi, S.-A., Bilen, H., and Vedaldi, A. (2017). Learning multiple visual domains
with residual adapters. In Advances in Neural Information Processing Systems, pages
506–516.

Rebuffi, S.-A., Bilen, H., and Vedaldi, A. (2018). Efficient parametrization of multi-
domain deep neural networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 8119–8127.

Requeima, J., Gordon, J., Bronskill, J., Nowozin, S., and Turner, R. E. (2019). Fast
and flexible multi-task classification using conditional neural adaptive processes.
Advances in Neural Information Processing Systems, 32.

120 References

Rezende, D. and Mohamed, S. (2015). Variational inference with normalizing flows. In
Bach, F. and Blei, D., editors, Proceedings of the 32nd International Conference on
Machine Learning, volume 37 of Proceedings of Machine Learning Research, pages
1530–1538, Lille, France. PMLR.

Roberts, S., Osborne, M., Ebden, M., Reece, S., Gibson, N., and Aigrain, S. (2013).
Gaussian processes for time-series modelling. Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences, 371(1984):20110550.

Robinson, C., Malkin, K., Jojic, N., Chen, H., Qin, R., Xiao, C., Schmitt, M., Ghamisi,
P., Hänsch, R., and Yokoya, N. (2021). Global land-cover mapping with weak
supervision: Outcome of the 2020 ieee grss data fusion contest. IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing, 14:3185–3199.

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks
for biomedical image segmentation. In International Conference on Medical image
computing and computer-assisted intervention, pages 234–241. Springer.

Ross, S. M., Kelly, J. J., Sullivan, R. J., Perry, W. J., Mercer, D., Davis, R. M.,
Washburn, T. D., Sager, E. V., Boyce, J. B., and Bristow, V. L. (1996). Stochastic
processes, volume 2. Wiley New York.

Rudner, T. G., Fortuin, V., Teh, Y. W., and Gal, Y. (2018). On the connection between
neural processes and gaussian processes with deep kernels. In Workshop on Bayesian
Deep Learning, NeurIPS, page 14.

Sachindra, D., Ahmed, K., Rashid, M. M., Shahid, S., and Perera, B. (2018). Statistical
downscaling of precipitation using machine learning techniques. Atmospheric research,
212:240–258.

Salimans, T., Karpathy, A., Chen, X., and Kingma, D. P. (2017). Pixelcnn++: Improv-
ing the pixelcnn with discretized logistic mixture likelihood and other modifications.
arXiv preprint arXiv:1701.05517.

Salimans, T., Kingma, D., and Welling, M. (2015). Markov chain monte carlo and
variational inference: Bridging the gap. In International Conference on Machine
Learning, pages 1218–1226. PMLR.

Schmidhuber, J. (1987). Evolutionary principles in self-referential learning. PhD thesis,
Technische Universität München.

Schrier, A. M. (1984). Learning how to learn: The significance and current status of
learning set formation. Primates, 25(1):95–102.

Service, C. C. C. (2020). Copernicus Climate Change Service (C3S) (2019): C3S
ERA5-Land reanalysis. (accessed: 15.05.2020).

Snell, J., Swersky, K., and Zemel, R. (2017). Prototypical networks for few-shot
learning. In Advances in Neural Information Processing Systems, pages 4080–4090.

References 121

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and Ganguli, S. (2015). Deep
unsupervised learning using nonequilibrium thermodynamics. In International
Conference on Machine Learning, pages 2256–2265. PMLR.

Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M. M., Allen, S. K., Boschung, J.,
Nauels, A., Xia, Y., Bex, V., and Midgley, P. M. (2013). Climate change 2013: The
physical science basis. Technical report, Cambridge University Press.

Sun, S., Zhang, G., Shi, J., and Grosse, R. (2019). Functional variational Bayesian
neural networks. In International Conference on Learning Representations.

Tank, A. M. G. K., Wijngaard, J. B., Können, G. P., Böhm, R., Demarée, G., Gocheva,
A., Mileta, M., Pashiardis, S., Hejkrlik, L., Kern-Hansen, C., Heino, R., Bessemoulin,
P., Müller-Westermeier, G., Tzanakou, M., Szalai, S., Pálsdóttir, T., Fitzgerald, D.,
Rubin, S., Capaldo, M., Maugeri, M., Leitass, A., Bukantis, A., Aberfeld, R., van
Engelen, A. F. V., Forland, E., Mietus, M., Coelho, F., Mares, C., Razuvaev, V.,
Nieplova, E., Cegnar, T., López, J. A., Dahlström, B., Moberg, A., Kirchhofer, W.,
Ceylan, A., Pachaliuk, O., Alexander, L. V., and Petrovic, P. (2002). Daily dataset
of 20th-century surface air temperature and precipitation series for the european
climate assessment. International Journal of Climatology, 22(12):1441–1453.

Tao, T. (2011). An introduction to measure theory, volume 126. American Mathematical
Society Providence, RI.

Theobald, D. M., Harrison-Atlas, D., Monahan, W. B., and Albano, C. M. (2015).
Ecologically-relevant maps of landforms and physiographic diversity for climate
adaptation planning. PLoS One, 10(12):e0143619.

Thompson, W. R. (1933). On the likelihood that one unknown probability exceeds
another in view of the evidence of two samples. Biometrika, 25(3/4):285–294.

Triantafillou, E., Zhu, T., Dumoulin, V., Lamblin, P., Xu, K., Goroshin, R., Gelada, C.,
Swersky, K., Manzagol, P.-A., and Larochelle, H. (2019). Meta-dataset: A dataset of
datasets for learning to learn from few examples. arXiv preprint arXiv:1903.03096.

Turner, R. E. and Sahani, M. (2011). Two problems with variational expectation
maximisation for time-series models. In Barber, D., Cemgil, T., and Chiappa,
S., editors, Bayesian Time series models, chapter 5, pages 109–130. Cambridge
University Press.

Uria, B., Côté, M.-A., Gregor, K., Murray, I., and Larochelle, H. (2016). Neural
autoregressive distribution estimation. Journal of Machine Learning Research,
17(205):1–37.

Uria, B., Murray, I., and Larochelle, H. (2013). Rnade: The real-valued neural
autoregressive density-estimator. Advances in Neural Information Processing Systems,
26.

Uria, B., Murray, I., and Larochelle, H. (2014). A deep and tractable density estimator.
In International Conference on Machine Learning, pages 467–475. PMLR.

122 References

Vandal, T., Kodra, E., Dy, J., Ganguly, S., Nemani, R., and Ganguly, A. R. (2018).
Quantifying uncertainty in discrete-continuous and skewed data with bayesian deep
learning. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 2377–2386.

Vandal, T., Kodra, E., and Ganguly, A. R. (2019). Intercomparison of machine learning
methods for statistical downscaling: the case of daily and extreme precipitation.
Theoretical and Applied Climatology, 137(1):557–570.

Vandal, T., Kodra, E., Ganguly, S., Michaelis, A., Nemani, R., and Ganguly, A. R.
(2017). Deepsd: Generating high resolution climate change projections through
single image super-resolution. In Proceedings of the 23rd acm sigkdd international
conference on knowledge discovery and data mining, pages 1663–1672.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
L., and Polosukhin, I. (2017). Attention is all you need. CoRR, abs/1706.03762.

Vaughan, A., Tebbutt, W., Hosking, J. S., and Turner, R. E. (2022). Convolutional
conditional neural processes for local climate downscaling. Geoscientific Model
Development, 15(1):251–268.

Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., and Wierstra, D. (2016).
Matching networks for one shot learning. In Advances in Neural Information
Processing Systems 29. Curran Associates, Inc.

Volpp, M., Flürenbrock, F., Grossberger, L., Daniel, C., and Neumann, G. (2021).
Bayesian context aggregation for neural processes. In International Conference on
Learning Representations.

Volterra, V. (1926). Variazioni e fluttuazioni del bumero d’ondividui in specie animali
conviventi. Memoria della Reale Accademia Nazionale dei Lincei, 2:31–113.

Wagstaff, E., Fuchs, F., Engelcke, M., Posner, I., and Osborne, M. A. (2019). On the
limitations of representing functions on sets. In Chaudhuri, K. and Salakhutdinov,
R., editors, Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pages 6487–6494, Long
Beach, California, USA. PMLR.

Wang, S., Suo, S., Ma, W.-C., Pokrovsky, A., and Urtasun, R. (2018). Deep parametric
continuous convolutional neural networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2589–2597.

White, B., Singh, A., and Albert, A. (2019). Downscaling numerical weather models
with gans. In AGU Fall Meeting Abstracts, volume 2019, pages GC43D–1357.

Wilkinson, D. J. (2011). Stochastic modelling for systems biology. CRC press.

Williams, C. K. and Rasmussen, C. E. (2006). Gaussian processes for machine learning,
volume 2. MIT press Cambridge, MA.

Wilson, A. G. and Ghahramani, Z. (2010). Copula processes. Advances in Neural
Information Processing Systems, 23:2460–2468.

References 123

Wilson, A. G., Hu, Z., Salakhutdinov, R., and Xing, E. P. (2015). Deep kernel learning.

Wu, W., Qi, Z., and Fuxin, L. (2019). PointConv: Deep convolutional networks on 3d
point clouds. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

Wu, Y., Burda, Y., Salakhutdinov, R., and Grosse, R. (2016). On the quantitative
analysis of decoder-based generative models. arXiv preprint arXiv:1611.04273.

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R., and
Bengio, Y. (2015). Show, attend and tell: Neural image caption generation with
visual attention. In International conference on machine learning, pages 2048–2057.
PMLR.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., and Le, Q. V. (2019).
Xlnet: Generalized autoregressive pretraining for language understanding. Advances
in neural information processing systems, 32.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R., and Smola,
A. (2017a). Deep sets. In Advances in Neural Information Processing Systems 30.
Curran Associates, Inc.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R., and Smola,
A. J. (2017b). Deep sets. In Advances in Neural Information Processing Systems,
pages 3394–3404.

Zhang, H., Goodfellow, I., Metaxas, D., and Odena, A. (2019). Self-attention generative
adversarial networks. In International conference on machine learning, pages 7354–
7363. PMLR.

Zhang, X. L., Begleiter, H., Porjesz, B., Wang, W., and Litke, A. (1995). Event related
potentials during object recognition tasks. Brain Research Bulletin, 38(6):531–538.

Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., and He, Q. (2020).
A comprehensive survey on transfer learning. Proceedings of the IEEE, 109(1):43–76.

Zimmer, L., Lindauer, M., and Hutter, F. (2021). Auto-pytorch: Multi-fidelity met-
alearning for efficient and robust autodl. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 43(9):3079–3090.

Appendix A

Chapter 3 Supplementary Material

A.1 Theoretical Results and Proofs

In this section, we provide the proof of Thm 1. Our proof strategy is as follows. We
first define an appropriate topology for fixed-sized sets (Section A.1.1). With this
topology in place, we demonstrate that our proposed embedding into function space
is homeomorphic (Lems 1 and 2). We then show that the embeddings of fixed-sized
sets can be extended to varying-sized sets by “pasting” the embeddings together while
maintaining their homeomorphic properties (Lem 3). Following this, we demonstrate
that the resulting embedding may be composed with a continuous mapping to our
desired target space, resulting in a continuous mapping between two metric spaces
(Lem 4). Finally, in Section A.1.3 we combine the above-mentioned results to prove
Thm 1.

We begin with definitions that we will use throughout the section and then present
our results. Let X = Rd and let Y ⊆ R be compact. Let ψ be a symmetric, positive-
definite kernel on X . By the Moore–Aronszajn Theorem, there is a unique Hilbert space
(H, ⟨ • , • ⟩H) of real-valued functions on X for which ψ is a reproducing kernel. This
means that (i) ψ(• ,x) ∈ H for all x ∈ X and (ii) ⟨f, ψ(• ,x)⟩H = f(x) for all f ∈ H
and x ∈ X (reproducing property). For ψ : X × X → R, X = (x1, . . . ,xn) ∈ X n, and
X ′ = (x′1, . . . ,x′n) ∈ X n, we denote

ψ(X,X ′) =


ψ(x1,x

′
1) · · · ψ(x1,x

′
n)

...
ψ(xn,x′1) · · · ψ(xn,x′n)

 .

126 Chapter 3 Supplementary Material

Definition 4 (Interpolating RKHS). Call H interpolating if it interpolates any finite
number of points: for every ((xi, yi))ni=1 ⊆ X × Y with (xi)ni=1 all distinct, there is an
f ∈ H such that f(x1) = y1, . . . , f(xn) = yn.

For example, the RKHS induced by any strictly positive-definite kernel, e.g.
the exponentiated quadratic (EQ) kernel ψ(x,x′) = σ2 exp(− 1

2ℓ2∥x − x
′∥2), is in-

terpolating: Let c = ψ(X,X)−1y and consider f = ∑n
i=1 ciψ(• ,xi) ∈ H. Then

f(X) = ψ(X,X)c = y.

A.1.1 The Quotient Space An/Sn

Let A be a Banach space. For x = (x1, . . . , xn) ∈ An and y = (y1, . . . , yn) ∈ An, let
x ∼ y if x is a permutation of y; that is, x ∼ y if and only if x = πy for some π ∈ Sn
where

πy = (yπ(1), . . . , yπ(n)).

Let An/ Sn be the collection of equivalence classes of ∼. Denote the equivalence class of
x by [x]; for A ⊆ An, denote [A] = {[a] : a ∈ A}. Call the map x 7→ [x] : An → An/ Sn
the canonical map. The natural topology on An/Sn is the quotient topology, in which
a subset of An/Sn is open if and only if its preimage under the canonical map is open
in An. In what follows, we show that the quotient topology is metrizable.

On An, since all norms on finite-dimensional vector spaces are equivalent, without
loss of generality consider

∥x∥2
An = ∑n

i=1 ∥xi∥2
A.

Note that ∥ • ∥An is permutation invariant: ∥π • ∥An = ∥ • ∥An for all π ∈ Sn. On
An/ Sn, define

d : An/Sn ×An/Sn → [0,∞), d([x], [y]) = minπ∈Sn ∥x− πy∥An .

Call a set [A] ⊆ An/ Sn bounded if {d([x], [0]) : [x] ∈ [A]} is bounded.

Proposition 4. The function d is a metric.

Proof. We first show that d is well defined on An/Sn. Assume x ∼ x′ and y ∼ y′.
Then, x′ = πxx and y′ = πyy. Using the group properties of Sn and the permutation

A.1 Theoretical Results and Proofs 127

invariance of ∥ • ∥An :

d([x′], [y′]) = minπ∈Sn ∥πxx− ππyy∥An

= minπ∈Sn ∥πxx− πy∥An

= minπ∈Sn ∥x− π−1
x πy∥An

= minπ∈Sn ∥x− πy∥An

= d([x], [y]).

It is clear that d([x], [y]) = d([y], [x]) and that d([x], [y]) = 0 if and only if [x] = [y].
To show the triangle inequality, note that

∥x− π1π2y∥An ≤ ∥x− π1z∥An + ∥π1z − π1π2y∥An = ∥x− π1z∥An + ∥z − π2y∥An ,

using permutation invariance of ∥ • ∥An . Hence, taking the minimum over π1,

d([x], [y]) ≤ d([x], [z]) + ∥z − π2y∥An ,

so taking the minimum over π2 gives the triangle inequality for d.

Proposition 5. The canonical map An → An/ Sn is continuous under the metric
topology induced by d.

Proof. Follows directly from d([x], [y]) ≤ ∥x− y∥An .

Proposition 6. Let A ⊆ An be topologically closed and closed under permutations.
Then [A] is topologically closed in An/ Sn under the metric topology.

Proof. Recall that a subset [A] of a metric space is closed iff every limit point of [A]
is also in [A]. Consider a sequence ([an])∞n=1 ⊆ [A] converging to some [x] ∈ An/ Sn.
Then there are permutations (πn)∞n=1 ⊆ Sn such that πnan → x. Here πnan ∈ A,
because A is closed under permutations. Thus x ∈ A, as A is also topologically closed.
We conclude that [x] ∈ [A].

Proposition 7. Let A ⊆ An be open. Then [A] is open in An/Sn under the metric
topology. In other words, the canonical map is open under the metric topology.

128 Chapter 3 Supplementary Material

Proof. Let [x] ∈ [A]. Because A is open, there is some ball Bε(y) with ε > 0 and y ∈ A
such that x ∈ Bε(y) ⊆ A. Then [x] ∈ Bε([y]), since d([x], [y]) ≤ ∥x− y∥An < ε, and
we claim that Bε([y]) ⊆ [A]. Hence [x] ∈ Bε([y]) ⊆ [A], so [A] is open.

To show the claim, let [z] ∈ Bε([y]). Then d(πz,y) < ε for some π ∈ Sn. Hence
πz ∈ Bε(y) ⊆ A, so πz ∈ A. Therefore, [z] = [πz] ∈ [A].

Proposition 8. The quotient topology on An/Sn induced by the canonical map is
metrizable with the metric d.

Proof. Since the canonical map is surjective, there exists exactly one topology on
An/ Sn relative to which the canonical map is a quotient map: the quotient topology
(Munkres, 1974).

Let p : An → An/Sn denote the canonical map. It remains to show that p is a
quotient map under the metric topology induced by d; that is, we show that U ⊂ An/Sn
is open in An/ Sn under the metric topology if and only if p−1(U) is open in An.

Let p−1(U) be open in An. We have that U = p(p−1(U)), so U is open in An/Sn
under the metric topology by Proposition 7. Conversely, if U is open in An/Sn under
the metric topology, then p−1(U) is open in An by continuity of the canonical map
under the metric topology.

A.1.2 Embeddings of Sets Into an RKHS

Whereas A previously denoted an arbitrary Banach space, in this section we specialize
to A = X × Y . We denote an element in A by (x, y) and an element in ZM = AM by
((x1, y1), . . . , (xM , yM)). Alternatively, we denote ((x1, y1), . . . , (xM , yM)) by (X,y)
where X = (x1, . . . ,xM) ∈ XM and y = (y1, . . . , yM) ∈ YM . We clarify that an
element in ZM = AM is permuted as follows: for π ∈ SM ,

π(X,y) = π((x1, y1), . . . , (xM , yM)) = ((xπ(1), yπ(1)), . . . , (xπ(n), yπ(n))) = (πX, πy).

Note that permutation-invariant functions on ZM are in correspondence to functions
on the quotient space induced by the equivalence class of permutations, ZM/Sm The
latter is a more natural representation.

Lem 3 states that it is possible to homeomorphically embed sets into an RKHS.
This result is key to proving our main result. Before proving Lem 3, we provide several

A.1 Theoretical Results and Proofs 129

useful results. We begin by demonstrating that an embedding of sets of a fixed size
into a RKHS is continuous and injective.

Lemmma 1. Consider a collection Z ′M ⊆ ZM that has multiplicity K. Set

ϕ : Y → RK+1, ϕ(y) = (y0, y1, · · · , yK)

and let ψ be an interpolating, continuous positive-definite kernel. Define

HM =
{
M∑
i=1

ϕ(yi)ψ(• ,xi) : (xi, yi)Mi=1 ⊆ Z ′M

}
⊆ HK+1, (A.1)

where HK+1 = H× · · · × H is the (K + 1)-dimensional-vector–valued–function Hilbert
space constructed from the RKHS H for which ψ is a reproducing kernel and endowed
with the inner product ⟨f, g⟩HK+1 = ∑K+1

i=1 ⟨fi, gi⟩H. Then the embedding

EM : [Z ′M]→ HM , EM([(x1, y1), . . . , (xM , yM)]) =
M∑
i=1

ϕ(yi)ψ(• ,xi)

is injective, hence invertible, and continuous.

Proof. First, we show that EM is injective. Suppose that

M∑
i=1

ϕ(yi)ψ(• ,xi) =
M∑
i=1

ϕ(y′i)ψ(• ,x′i).

Denote X = (x1, . . . ,xM) and y = (y1, . . . , yM), and denote X ′ and y′ similarly.
Taking the inner product with any f ∈ H on both sides and using the reproducing
property of ψ, this implies that

M∑
i=1

ϕ(yi)f(xi) =
M∑
i=1

ϕ(y′i)f(x′i)

for all f ∈ H. In particular, since by construction ϕ1(•) = 1,

M∑
i=1

f(xi) =
M∑
i=1

f(x′i)

130 Chapter 3 Supplementary Material

for all f ∈ H. Using that H is interpolating, choose a particular x̂ ∈X ∪X ′, and let
f ∈ H be such that f(x̂) = 1 and f(•) = 0 at all other xi and x′i. Then

∑
i:xi=x̂

1 =
∑

i:x′
i=x̂

1,

so the number of such x̂ in X and the number of such x̂ in X ′ are the same. Since
this holds for every x̂, X is a permutation of X ′: X = π(X ′) for some permutation
π ∈ SM . Plugging in the permutation, we can write

M∑
i=1

ϕ(yi)f(xi) =
M∑
i=1

ϕ(y′i)f(x′i)
(X′=π−1(X))=

M∑
i=1

ϕ(y′i)f(xπ−1(i))
(i←π−1(i))=

M∑
i=1

ϕ(y′π(i))f(xi).

Then, by a similar argument, for any particular x̂,

∑
i:xi=x̂

ϕ(yi) =
∑

i:xi=x̂
ϕ(y′π(i)).

Let the number of terms in each sum equal S. Since Z ′M has multiplicity K, S ≤ K. By
Lemma 4 from Zaheer et al. (2017b), the ‘sum-of-power mapping’ from {yi : xi = x̂}
to the first S + 1 elements of ∑i:xi=x̂ ϕ(yi), i.e.

(∑
i:xi=x̂ y

0
i , . . . ,

∑
i:xi=x̂ y

S
i

)
, is injective.

Therefore,
(yi)i:xi=x̂ is a permutation of (y′π(i))i:xi=x̂.

Note that xi = x̂ for all above yi. Furthermore, note that also x′π(i) = xi = x̂ for all
above y′π(i). We may therefore adjust the permutation π such that yi = y′π(i) for all i
such that xi = x̂ whilst retaining that x = π(x′). Performing this adjustment for all
x̂, we find that y = π(y′) and x = π(x′).

Second, we show that EM is continuous. Compute
∥∥∥∥∥∥
M∑
i=1

ϕ(yi)ψ(• ,xi)−
M∑
j=1

ϕ(y′j)ψ(• ,x′j)
∥∥∥∥∥∥

2

HK+1

=
K+1∑
i=1

(
ϕ⊤i (y)ψ(X,X)ϕi(y)− 2ϕ⊤i (y)ψ(X,X ′)ϕi(y′) + ϕ⊤i (y′)ψ(X ′,X ′)ϕi(y′)

)
,

which goes to zero if [X ′,y′]→ [X,y] by continuity of ψ.

A.1 Theoretical Results and Proofs 131

Having established the injection, we now show that this mapping is a homeo-
morphism, i.e. that the inverse is continuous. This is formalized in the following
lemma.

Lemmma 2. Consider Lem 1. Suppose that Z ′M is also topologically closed in AM and
closed under permutations, and that ψ also satisfies (i) ψ(x,x′) ≥ 0, (ii) ψ(x,x) = σ2 > 0,
and (iii) ψ(x,x′)→ 0 as ∥x∥ → ∞. Then HM is closed in HK+1 and E−1

M is continu-
ous.

Remark 1. To define Z ′2 with multiplicity one, one might be tempted to define

Z ′2 = {((x1, y1), (x2, y2)) ∈ Z2 : x1 ̸= x2},

which indeed has multiplicity one. Unfortunately, Z ′2 is not closed: if [0, 1] ⊆ X and
[0, 2] ⊆ Y, then ((0, 1), (1/n, 2))∞n=1 ⊆ Z ′2, but ((0, 1), (1/n, 2))→ ((0, 1), (0, 2)) /∈ Z ′2,
because 0 then has two observations 1 and 2. To get around this issue, one can require
an arbitrarily small, but non-zero spacing ϵ > 0 between input locations:

Z ′2,ϵ = {((x1, y1), (x2, y2)) ∈ Z2 : ∥x1 − x2∥ ≥ ϵ}.

This construction can be generalized to higher numbers of observations and multiplicities
as follows:

Z ′M,K,ϵ = {(xπ(i), yπ(i))Mi=1 ∈ ZM : ∥xi − xj∥ ≥ ϵ for i, j ∈ [K], π ∈ SM}.

Remark 2. Before moving on to the proof of Lem 2, we remark that Lem 2 would
directly follow if Z ′M were bounded: then Z ′M is compact, so EM is a continuous,
invertible map between a compact space and a Hausdorff space, which means that E−1

M

must be continuous. The intuition that the result must hold for unbounded Z ′M is as
follows. Since ϕ1(•) = 1, for every f ∈ HM , f1 is a summation of M “bumps” (imagine
the EQ kernel) of the form ψ(• ,xi) placed throughout X . If one of these bumps goes
off to infinity, then the function cannot uniformly converge pointwise, which means
that the function cannot converge in H (if ψ is sufficiently nice). Therefore, if the
function does converge in H, (xi)Mi=1 must be bounded, which brings us to the compact
case. What makes this work is the density channel ϕ1(•) = 1, which forces (xi)Mi=1 to
be well behaved. The above argument is formalized in the proof of Lem 2.

132 Chapter 3 Supplementary Material

Proof. Define
ZJ = ([−J, J]d × Y)M ∩ Z ′M ,

which is compact in AM as a closed subset of the compact set ([−J, J]d × Y)M . We
aim to show that HM is closed in HK+1 and E−1 is continuous. To this end, consider
a convergent sequence

f (n) = ∑M
i=1ϕ(y(n)

i)ψ(• ,x(n)
i)→ f ∈ HK+1.

Denote X(n) = (x(n)
1 , . . . ,x

(n)
M) and y(n) = (y(n)

1 , . . . , y
(n)
M). Claim: (X(n))∞n=1 is a

bounded sequence, so (X(n))∞n=1 ⊆ [−J, J]dM for J large enough, which means that
(X(n),y(n))∞n=1 ⊆ ZJ where ZJ is compact. Note that [ZJ] is compact in AM/SM by
continuity of the canonical map.

First, we demonstrate that, assuming the claim, HM is closed. Note that by
boundedness of (X(n),y(n))∞n=1, (f (n))∞n=1 is in the image of EM |[ZJ] : [ZJ]→ HM . By
continuity of EM |[ZJ] and compactness of [ZJ], the image of EM |[ZJ] is compact and
therefore closed, since every compact subset of a metric space is closed. Therefore, the
image of EM |[ZJ] contains the limit f . Since the image of EM |[ZJ] is included in HM ,
we have that f ∈ HM , which shows that HM is closed.

Next, we prove that, assuming the claim, E−1
M is continuous. Consider EM |[ZJ] : [ZJ]→

EM ([ZJ]) restricted to its image. Then (EM |[ZJ])−1 is continuous, because a continuous
bijection from a compact space to a metric space is a homeomorphism. Therefore

E−1
M (f (n)) = (X(n),y(n)) = (EM |[ZJ])−1(f (n))→ (EM |[ZJ])−1(f) = (X,y).

By continuity and invertibility of EM , then f (n) → EM(X,y), so EM(X,y) = f by
uniqueness of limits. We conclude that E−1

M (f (n))→ E−1
M (f), which means that E−1

M is
continuous.

It remains to show the claim. Let f1 denote the first element of f , i.e. the density
channel. Using the reproducing property of ψ,

|f (n)
1 (x)− f1(x)| = |⟨ψ(x, •), f (n)

1 − f1⟩| ≤ ∥ψ(x, •)∥H∥f (n)
1 − f1∥H = σ∥f (n)

1 − f1∥H,

so f (n)
1 → f1 in H means that it does so uniformly pointwise (over x). Hence, we can

let N ∈ N be such that n ≥ N implies that |f (n)
1 (x)− f1(x)| < 1

3σ
2 for all x. Let R

be such that |ψ(x,x(N)
i)| < 1

3σ
2/M for ∥x∥ ≥ R and all i ∈ [M]. Then, for ∥x∥ ≥ R,

|f (N)
1 (x)| ≤ ∑M

i=1|ψ(x,x(N)
i)| < 1

3σ
2 =⇒ |f1(x)| ≤ |f (N)

1 (x)|+|f (N)
1 (x)−f1(x)| < 2

3σ
2.

A.1 Theoretical Results and Proofs 133

At the same time, by pointwise non-negativity of ψ, we have that

f
(n)
1 (x(n)

i) = ∑M
j=1ψ(x(n)

j ,x
(n)
i) ≥ ψ(x(n)

i ,x
(n)
i) = σ2.

Towards contradiction, suppose that (X(n))∞n=1 is unbounded. Then (x(n)
i)∞n=1 is

unbounded for some i ∈ [M]. Therefore, ∥x(n)
i ∥ ≥ R for some n ≥ N , so

2
3σ

2 > |f1(x(n)
i)| ≥ |f (n)

1 (x(n)
i)| − |f (n)

1 (x(n)
i)− f1(x(n)

i)| ≥ σ2 − 1
3σ

2 = 2
3σ

2,

which is a contradiction.

The following lemma states that we may construct an encoding for sets containing
no more than M elements into a function space, where the encoding is injective and
every restriction to a fixed set size is a homeomorphism.

Lemmma 3. For every m ∈ [M], consider a collection Z ′m ⊆ Zm that (i) has
multiplicity K, (ii) is topologically closed, and (iii) is closed under permutations. Set

ϕ : Y → RK+1, ϕ(y) = (y0, y1, · · · , yK)

and let ψ be an interpolating, continuous positive-definite kernel that satisfies (i) ψ(x,x′) ≥ 0,
(ii) ψ(x,x) = σ2 > 0, and (iii) ψ(x,x′)→ 0 as ∥x∥ → ∞. Define

Hm =
{

m∑
i=1

ϕ(yi)ψ(• ,xi) : (xi, yi)mi=1 ⊆ Z ′m

}
⊆ HK+1, (A.2)

where HK+1 = H× · · · × H is the (K + 1)-dimensional-vector–valued–function Hilbert
space constructed from the RKHS H for which ψ is a reproducing kernel and endowed
with the inner product ⟨f, g⟩HK+1 = ∑K+1

i=1 ⟨fi, gi⟩H. Denote

[Z ′≤M] =
M⋃
m=1

[Z ′m] and H≤M =
M⋃
m=1
Hm.

Then (Hm)Mm=1 are pairwise disjoint. It follows that the embedding E

E : [Z ′≤M]→ H≤M , E([Z]) = Em([Z]) if [Z] ∈ [Z ′m]

is injective, hence invertible. Denote this inverse by E−1, where E−1(f) = E−1
m (f) if

f ∈ Hm.

134 Chapter 3 Supplementary Material

Proof. Recall that Em is injective for every m ∈ [M]. Hence, to demonstrate that E is
injective it remains to show that (Hm)Mm=1 are pairwise disjoint. To this end, suppose
that

m∑
i=1

ϕ(yi)ψ(• ,xi) =
m′∑
i=1

ϕ(y′i)ψ(• ,x′i)

for m ̸= m′. Then, by arguments like in the proof of Lem 1,

m∑
i=1

ϕ(yi) =
m′∑
i=1

ϕ(y′i).

Since ϕ1(•) = 1, this gives m = m′, which is a contradiction. Finally, by repeated
application of Lem 2, E−1

m is continuous for every m ∈ [M].

Lemmma 4. Let Φ: [Z ′≤M]→ Cb(X ,Y) be a map from [Z ′≤M] to Cb(X ,Y), the space
of continuous bounded functions from X to Y, such that every restriction Φ|[Z′

m] is
continuous, and let E be from Lem 3. Then

Φ ◦ E−1 : H≤M → Cb(X ,Y)

is continuous.

Proof. Recall that, due to Lem 1, for every m ∈ [M], E−1
m is continuous and has image

[Z ′m]. By the continuity of Φ|[Z′
m], then Φ|[Z′

m] ◦ E−1
m is continuous for every m ∈ [M].

Since Φ◦E−1|Hm = Φ|[Z′
m] ◦E−1

m for all m ∈ [M], we have that Φ◦E−1|Hm is continuous
for all m ∈ [M]. Therefore, as Hm is closed in H≤M for every m ∈ [M], the pasting
lemma (Munkres, 1974) yields that Φ ◦ E−1 is continuous.

From here on, we let ψ be a stationary kernel, which means that it only depends
on the difference of its arguments and can be seen as a function X → R.

A.1.3 Proof of Thm 1

With the above results in place, we are finally ready to prove our central result, Thm 1.

Theorem 4. For everym ∈ [M], consider a collection Z ′m ⊆ Zm that (i) has multiplicity
K, (ii) is topologically closed, (iii) is closed under permutations, and (iv) is closed

A.1 Theoretical Results and Proofs 135

under translations. Set

ϕ : Y → RK+1, ϕ(y) = (y0, y1, · · · , yK)

and let ψ be an interpolating, continuous positive-definite kernel that satisfies (i) ψ(x,x′) ≥ 0,
(ii) ψ(x,x) = σ2 > 0, and (iii) ψ(x,x′)→ 0 as ∥x∥ → ∞. Define

Hm =
{

m∑
i=1

ϕ(yi)ψ(• ,xi) : (xi, yi)mi=1 ⊆ Z ′m

}
⊆ HK+1, (A.3)

where HK+1 = H× · · · ×H is the (K + 1)-dimensional-vector–valued–function Hilbert
space constructed from the RKHS H for which ψ is a reproducing kernel and endowed
with the inner product ⟨f, g⟩HK+1 = ∑K+1

i=1 ⟨fi, gi⟩H. Denote

Z ′≤M =
M⋃
m=1
Z ′m and H≤M =

M⋃
m=1
Hm.

Then a function Φ: Z ′≤M → Cb(X ,Y) satisfies (i) continuity of the restriction Φ|Zm

for every m ∈ [M], (ii) permutation invariance (Property 1), and (iii) translation
equivariance (Property 2) if and only if it has a representation of the form

Φ(Z) = ρ (E(Z)) , E((x1, y1), . . . , (xm, ym)) = ∑m
i=1 ϕ(yi)ψ(• − xi)

where ρ : H≤M → Cb(X ,Y) is continuous and translation equivariant.

Proof of sufficiency. To begin with, note that permutation invariance (Property 1)
and translation equivariance (Property 2) for Φ are well defined, because Z ′≤M is
closed under permutations and translations by assumption. First, Φ is permutation
invariant, because addition is commutative and associative. Second, that Φ is translation
equivariant (Property 2) follows from a direct verification and that ρ is also translation
equivariant:

Φ(TτZ) = ρ

(
M∑
i=1

ϕ(yi)ψ(• − (xi + τ))
)

= ρ

(
M∑
i=1

ϕ(yi)ψ((• − τ)− xi)
)

= ρ

(
M∑
i=1

ϕ(yi)ψ(• − xi)
)

(· − τ)

= Φ(Z)(· − τ)
= T ′τΦ(Z).

136 Chapter 3 Supplementary Material

Proof of necessity. Our proof follows the strategy used by Wagstaff et al. (2019); Zaheer
et al. (2017b). To begin with, since Φ is permutation invariant (Property 1), we may
define

Φ:
M⋃
m=1

[Z ′m]→ Cb(X ,Y), Φ(Z) = Φ([Z]),

for which we verify that every restriction Φ|[Z′
m] is continuous. By invertibility of E

from Lem 3, we have [Z] = E−1(E([Z])). Therefore,

Φ(Z) = Φ([Z]) = Φ(E−1(E([Z]))) = (Φ ◦ E−1)
(
M∑
i=1

ϕ(yi)ψ(• − xi)
)
.

Define ρ : H≤M → Cb(X ,Y) by ρ = Φ ◦ E−1. First, ρ is continuous by Lem 4. Second,
E−1 is translation equivariant, because ψ is stationary. Also, by assumption Φ is
translation equivariant (Property 2). Thus, their composition ρ is also translation
equivariant.

Remark 3. The function ρ : H≤M → Cb(X ,Y) may be continuously extended to the
entirety of HK+1 using a generalisation of the Tietze Extension Theorem by Dugundji
et al. (1951). There are variants of Dugundji’s Theorem that also preserve translation
equivariance.

A.2 Baseline Neural Process Models

In both our 1d and image experiments, our main comparison is to conditional neural
process models. In particular, we compare to a vanilla CNP (1d only; Garnelo et al.
(2018a)) and an ACNP (Kim et al., 2019). Our architectures largely follow the details
given in the relevant publications.

CNP baseline. Our baseline CNP follows the implementation provided by the
authors.1 The encoder is a 3-layer MLP with 128 hidden units in each layer, and ReLU
non-linearities. The encoder embeds every context point into a representation, and
the representations are then averaged across each context set. Target inputs are then
concatenated with the latent representations, and passed to the decoder. The decoder
follows the same architecture, outputting mean and standard deviation channels for
each input.

1https://github.com/deepmind/neural-processes

A.3 1-Dimensional Experiments 137

Attentive CNP baseline. The ACNP we use corresponds to the deterministic
path of the model described by Kim et al. (2019) for image experiments. Namely,
an encoder first embeds each context point c to a latent representation (x(c),y(c)) 7→
r(c)
xy ∈ R128. For the image experiments, this is achieved using a 2-hidden layer MLP of

hidden dimensions 128. For the 1d experiments, we use the same encoder as the CNP
above. Every context point then goes through two stacked self-attention layers. Each
self-attention layer is implemented with an 8-headed attention, a skip connection, and
two layer normalizations (as described in Parmar et al. (2018), modulo the dropout
layer). To predict values at each target point t, we embed x(t) 7→ r(t)

x and x(c) 7→ r(c)
x

using the same single hidden layer MLP of dimensions 128. A target representation r(t)
xy

is then estimated by applying cross-attention (using an 8-headed attention described
above) with keys K := {r(c)

x }Cc=1, values V := {r(c)
xy }Cc=1, and query q := r(t)

x . Given the
estimated target representation r̂(t)

xy , the conditional predictive posterior is given by
a Gaussian pdf with diagonal covariance parametrised by (µ(t),σ(t)

pre) = decoder(r(t)
xy)

where µ(t),σ(t)
pre ∈ R3 and decoder is a 4 hidden layer MLP with 64 hidden units per

layer for the images, and the same decoder as the CNP for the 1d experiments.
Following Le et al. (2018), we enforce we set a minimum standard deviation

σ
(t)
min = [0.1; 0.1; 0.1] to avoid infinite log-likelihoods by using the following post-

processed standard deviation:

σ
(t)
post = 0.1σ(t)

min + (1− 0.1) log(1 + exp(σ(t)
pre)) (A.4)

A.3 1-Dimensional Experiments

In this section, we give details regarding our experiments for the 1d data. We begin
by detailing model architectures, and then provide details for the data generating
processes and training procedures. The density at which we evaluate the grid differs
from experiment to experiment, and so the values are given in the relevant subsections.
In all experiments, the weights are optimized using Adam (Kingma and Ba, 2015)
and weight decay of 10−5 is applied to all model parameters. The learning rates are
specified in the following subsections.

A.3.1 CNN Architectures

Throughout the experiments (Sections 3.5.1 to 3.5.3), we consider two models: Con-
vCNP (which utilizes a smaller architecture), and ConvCNPXL (with a larger

138 Chapter 3 Supplementary Material

architecture). For all architectures, the input kernel ψ was an EQ (exponentiated
quadratic) kernel with a learnable length scale parameter, as detailed in Section 3.4,
as was the kernel for the final output layer ψρ. When dividing by the density channel,
we add ε = 10−8 to avoid numerical issues. The length scales for the EQ kernels are
initialized to twice the spacing 1/γ1/d between the discretization points (ti)Ti=1, where
γ is the density of these points and d is the dimensionality of the input space X .

Moreover, we emphasize that the size of the receptive field is a product of the width
of the CNN filters and the spacing between the discretization points. Consequently, for
a fixed width kernel of the CNN, as the number of discretization points increases, the
receptive field size decreases. One potential improvement that was not employed in
our experiments, is the use of depthwise-separable convolutions (Chollet, 2017). These
dramatically reduce the number of parameters in a convolutional layer, and can be
used to increase the CNN filter widths, thus allowing one to increase the number of
discretization points without reducing the receptive field.

The architectures for ConvCNP and ConvCNPXL are described below.
ConvCNP. For the 1d experiments, we use a simple, 4-layer convolutional archi-

tecture, with ReLU nonlinearities. The kernel size of the convolutional layers was
chosen to be 5, and all employed a stride of length 1 and zero padding of 2 units.
The number of channels per layer was set to [16, 32, 16, 2], where the final channels
where then processed by the final, EQ-based layer of ρ as mean and standard deviation
channels. We employ a softplus nonlinearity on the standard deviation channel to
enforce positivity. This model has 6,537 parameters.

ConvCNPXL. Our large architecture takes inspiration from UNet (Ronneberger
et al., 2015). We employ a 12-layer architecture with skip connections. The number of
channels is doubled every layer for the first 6 layers, and halved every layer for the
final 6 layers. We use concatenation for the skip connections. The following describes
which layers are concatenated, where Li ← [Lj, Lk] means that the input to layer i is
the concatenation of the activations of layers j and k:

• L8 ← [L5, L7],

• L9 ← [L4, L8],

• L10 ← [L3, L9],

• L11 ← [L2, L10],

• L12 ← [L1, L11].

A.3 1-Dimensional Experiments 139

Like for the smaller architecture, we use ReLU nonlinearities, kernels of size 5, stride
1, and zero padding for two units on all layers.

A.3.2 Synthetic 1d Experimental Details and Additional Re-
sults

C
on

vC
N

P
A

C
N

P
C

N
P

Fig. A.1 Example functions learned by the (top) ConvCNP, (center) ACNP, and (bottom)
CNP when trained on an EQ kernel (with length scale parameter 1). “True function” refers
to the sample from the GP prior from which the context and target sets were sub-sampled.
“Ground Truth GP” refers to the GP posterior distribution when using the exact kernel and
performing posterior inference based on the context set. The left column shows the predictive
posterior of the models when data is presented in same range as training. The centre column
shows the model predicting outside the training data range when no data is observed there.
The right-most column shows the model predictive posteriors when presented with data
outside the training data range.

The kernels used for the Gaussian Processes which generate the data in this
experiment are defined as follows:

• EQ:
k(x, x′) = e−

1
2 (x−x′

0.25)2
,

• weakly periodic:

k(x, x′) = e−
1
2 (f1(x)−f1(x′))2− 1

2 (f2(x)−f2(x′))2 · e−
1
8 (x−x′)2

,

140 Chapter 3 Supplementary Material
C

on
vC

N
P

A
C

N
P

C
N

P

Fig. A.2 Example functions learned by the (top) ConvCNP, (center) ACNP, and (bottom)
CNP when trained on a Matérn-5/2 kernel (with length scale parameter 0.25). “True function”
refers to the sample from the GP prior from which the context and target sets were sub-
sampled. “Ground Truth GP” refers to the GP posterior distribution when using the exact
kernel and performing posterior inference based on the context set. The left column shows
the predictive posterior of the models when data is presented in same range as training. The
centre column shows the model predicting outside the training data range when no data is
observed there. The right-most column shows the model predictive posteriors when presented
with data outside the training data range.

with f1(x) = cos(8πx) and f2(x) = sin(8πx), and

• Matern–5
2 :

k(x, x′) = (1 + 4
√

5d+ 5
3d

2)e−
√

5d

with d = 4|x− x′|.

During the training procedure, the number of context points and target points for a
training batch are each selected randomly from a uniform distribution over the integers
between 3 and 50. This number of context and target points are randomly sampled
from a function sampled from the process (a Gaussian process with one of the above
kernels or the sawtooth process), where input locations are uniformly sampled from the
interval [−2, 2]. All models in this experiment were trained for 200 epochs using 256
batches per epoch of batch size 16. We discretize E(Z) by evaluating 64 points per unit
in this setting. We use a learning rate of 3e−4 for all models, except for ConvCNPXL

A.3 1-Dimensional Experiments 141
C

on
vC

N
P

A
C

N
P

C
N

P

Fig. A.3 Example functions learned by the (top) ConvCNP, (center) ACNP, and (bottom)
CNP when trained on a random sawtooth sample. The left column shows the predictive
posterior of the models when data is presented in the same range as training. The centre
column shows the model predicting outside the training data range when no data is observed
there. The right-most column shows the model predictive posteriors when presented with
data outside the training data range.

on the sawtooth data, where we use a learning rate of 1e−3 (this learning rate was too
large for the other models).

The random sawtooth samples are generated from the following function:

ysawtooth(t) = A

2 −
A

π

∞∑
k=1

(−1)k sin(2πkft)
k

, (A.5)

where A is the amplitude, f is the frequency, and t is “time”. Throughout training, we
fix the amplitude to be one. We truncate the series at an integer K. At every iteration,
we sample a frequency uniformly in [3, 5], K in [10, 20], and a random shift in [−5, 5].
As the task is much harder, we sample context and target set sizes over [3, 100]. Here
the CNP and ACNP employ learning rates of 10−3. All other hyperparameters remain
unchanged.

We include additional figures showing the performance of ConvCNPs, ACNPs
and CNPs on GP and sawtooth function regression tasks in Figures A.1 to A.3.

142 Chapter 3 Supplementary Material

Variable m s

time 5.94 ×104 8.74 ×102

lsstu 1.26 1.63 ×102

lsstg -0.13 3.84 ×102

lsstr 3.73 3.41 ×102

lssti 5.53 2.85 ×102

lsstz 6.43 2.69 ×102

lssty 6.27 2.93 ×102

Table A.1 Values used to normalise the data in the PLAsTiCC experiments.

A.3.3 PLAsTiCC Experimental Details

The ConvCNP was trained for 200 epochs using 1024 batches of batch size 4 per
epoch. For training and testing, the number of context points for a batch are each
selected randomly from a uniform distribution over the integers between 1 and the
number of points available in the series (usually between 10–30 per bandwidth). The
remaining points in the series are used as the target set. For testing, a batch size
of 1 was used and statistics were computed over 1000 evaluations. We compare
ConvCNP to the GP models used in (Boone, 2019) using the implementation in https:
//github.com/kboone/avocado. The data used for training and testing is normalized
according to t(v) = (v−m)/s with the values in Table A.1. These values are estimated
from a batch sampled from the training data. To remove outliers in the GP results,
log-likelihood values less than −10 are removed from the evaluation. These same
datapoints were removed from the ConvCNP results as well.

For this dataset, we only used the ConvCNPXL, as we found the ConvCNP to
underfit. The learning rate was set to 10−3, and we discretize E(Z) by evaluating 256
points per unit.

A.3.4 Predator–Prey Experimental Details

We describe the way simulated training data for the experiment in Section 3.5.3 was
generated from the Lotka–Volterra model. The description is borrowed from (Wilkinson,
2011).

Let X be the number of predators and Y the number of prey at any point in our
simulation. According to the model, one of the following four events can occur:

A: A single predator is born according to rate θ1XY , increasing X by one.

B: A single predator dies according to rate θ2X, decreasing X by one.

https://github.com/kboone/avocado
https://github.com/kboone/avocado

A.3 1-Dimensional Experiments 143

C: A single prey is born according to rate θ3Y , increasing Y by one.

D: A single prey dies (is eaten) according to rate θ4XY , decreasing Y by one.

The parameter values θ1, θ2, θ3, and θ4, as well as the initial values of X and Y govern
the behavior of the simulation. We choose θ1 = 0.01, θ2 = 0.5, θ3 = 1, and θ4 = 0.01,
which are also used in (Papamakarios and Murray, 2016) and generate reasonable time
series. Note that these are likely not the parameter values that would be estimated
from the Hudson’s Bay lynx–hare data set (Leigh, 1968), but they are used because
they yield reasonably oscillating time series. Obtaining oscillating time series from the
simulation is sensitive to the choice of parameters and many parametrizations result in
populations that simply die out.

Time series are simulated using Gillespie’s algorithm (Gillespie, 1977):

1. Draw the time to the next event from an exponential distribution with rate equal
to the total rate θ1XY + θ2X + θ3Y + θ4XY .

2. Select one of the above events A, B, C, or D at random with probability
proportional to its rate.

3. Adjust the appropriate population according to the selected event, and go to 1.

The simulations using these parameter settings can yield a maximum population of
approximately 300 while the context set in the lynx–hare data set has an approximate
maximum population of about 80 so we scaled our simulation population by a factor of
2/7. We also remove time series which are longer than 100 units of time, which have
more than 10000 events, or where one of the populations is entirely zero. The number
of context points n for a training batch are each selected randomly from a uniform
distribution between 3 and 80, and the number of target points is 150−n. These target
and context points are then sampled from the simulated series. The Hudson’s Bay
lynx–hare data set has time values that range from 1845 to 1935. However, the values
supplied to the model range from 0 to 90 to remain consistent with the simulated data.

For evaluation, an interval of 18 points is removed from the the Hudson’s Bay lynx–
hare data set to act as a target set, while the remaining 72 points act as the context
set. This construction highlights the model’s interpolation as well as its uncertainty in
the presence of missing data.

Models in this setting were trained for 200 epochs with 256 batches per epoch, each
batch containing 50 tasks. For this data set, we only used the ConvCNP, as we found
the ConvCNPXL to overfit. The learning rate was set to 10−3, and we discretize
E(Z) by evaluating 100 points per unit.

144 Chapter 3 Supplementary Material

A.4 Image Experimental Details and Additional
Results

A.4.1 Experimental Details

Training details. In all experiments, we sample the number of context points
uniformly from U(ntotal

100 ,
ntotal

2), and the number of target points is set to ntotal. The
context and target points are sampled randomly from each of the 16 images per batch.
The weights are optimised using Adam (Kingma and Ba, 2015) with learning rate
5× 10−4. We use a maximum of 100 epochs, with early stopping of 15 epochs patience.
All pixel values are divided by 255 to rescale them to the [0, 1] range. In the following
discussion, we assume that images are RGB, but very similar models can be used
for greyscale images or other gridded inputs (e.g. 1d time series sampled at uniform
intervals).

Proposed convolutional CNP. Unlike ACNP and off-the-grid ConvCNP,
on-the-grid ConvCNP takes advantage of the gridded structure. Namely, the target
and context points can be specified in terms of the image, a context mask Mc, and a
target mask Mt instead of sets of input–value pairs. Although this is an equivalent
formulation, it makes it more natural and simpler to implement in standard deep
learning libraries. In the following, we dissect the architecture and algorithmic steps
succinctly summarized in Section 3.4. Note that all the convolutional layers are actually
depthwise separable (Chollet, 2017); this enables a large kernel size (i.e. receptive fields)
while being parameter and computationally efficient.

1. Let I denote the image. Select all context points signal := Mc ⊙ I and append a
density channel density := Mc, which intuitively says that “there is a point at
this position”: [signal, density]⊤. Each pixel value will now have 4 channels: 3
RGB channels and 1 density channel Mc. Note that the mask will set the pixel
value to 0 at a location where the density channel is 0, indicating there are no
points at this position (a missing value).

2. Apply a convolution to the density channel density′ = convθ(density) and a
normalized convolution to the signal signal′ := convθ(signal)/density′. The
normalized convolution makes sure that the output mostly depends on the scale
of the signal rather than the number of observed points. The output channel size
is 128 dimensional. The kernel size of convθ depends on the image shape and
model used (Table A.2). We also enforce element-wise positivity of the trainable

A.4 Image Experimental Details and Additional Results 145

filter by taking the absolute value of the kernel weights θ before applying the
convolution. As discussed in Section A.4.4, the normalization and positivity
constraints do not empirically lead to improvements for on-the-grid data. Note
that in this setting, E(Z) is [signal′, density′]⊤.

3. Now we describe the on-the-grid version of ρ(·), which we decompose into two
stages. In the first stage, we apply a CNN to [signal′, density′]⊤. This CNN is
composed of residual blocks (He et al., 2016), each consisting of 1 or 2 (Table A.2)
convolutional layers with ReLU activations and no batch normalization. The
number of output channels in each layer is 128. The kernel size is the same across
the whole network, but depends on the image shape and model used (Table A.2).

4. In the second stage of ρ(·), we apply a shared pointwise MLP : R128 → R2C (we
use the same architecture as used for the ACNP decoder) to the output of the
first stage at each pixel location in the target set. Here C denotes the number of
channels in the image. The first C outputs of the MLP are treated as the means
of a Gaussian predictive distribution, and the last C outputs are treated as the
standard deviations. These then pass through the positivity-enforcing function
shown in Equation (A.4).

Model Input Shape convθ

Kernel Size
CNN

Kernel Size
CNN Num.
Res. Blocks

Conv. Layers
per Block

ConvCNP < 50 pixels 9 5 4 1
> 50 pixels 7 3 4 1

ConvCNP XL any 9 11 6 2

Table A.2 CNN architecture for the image experiments.

A.4.2 Zero Shot Multi MNIST (ZSMM) data

In the real world, it is very common to have multiple objects in our field of view
which do not interact with each other. Yet, many image data sets in machine learning
contain only a single, well-centered object. To evaluate the translation equivariance
and generalization capabilities of our model, we introduce the zero-shot multi-MNIST
setting.

The training set contains all 60000 28× 28 MNIST training digits centered on a
black 56× 56 background. (Figure A.4a). For the test set, we randomly sample with

146 Chapter 3 Supplementary Material

(a) Train (b) Test

Fig. A.4 Samples from our generated Zero Shot Multi MNIST (ZSMM) data set.

replacement 10000 pairs of digits from the MNIST test set, place them on a black
56 × 56 background, and translate the digits in such a way that the digits can be
arbitrarily close but cannot overlap (Figure A.4b). Importantly, the scale of the digits
and the image size are the same during training and testing.

A.4.3 ACNP and ConvCNP Qualitative Comparison

Figure A.5 shows the test log-likelihood distributions of an ACNP and ConvCNP
model as well as some qualitative comparisons between the two.

Although most mean predictions of both models look relatively similar for SVHN
and CelebA32, the real advantage of ConvCNP becomes apparent when testing the
generalization capacity of both models. Figure A.6 shows ConvCNP and ACNP
trained on CelebA32 and tested on a downscaled version of Ellen’s famous Oscar selfie.
We see that ConvCNP generalizes better in this setting. 2

A.4.4 Ablation Study: First Layer

To understand the importance of the different components of the first layer, we per-
formed an ablation study by removing the density normalization (ConvCNP no
norm.), removing the density channel (ConvCNP no dens.), removing the positivity

2The reconstruction looks worse than Figure 3.5b despite the larger context set, because the
test image has been downscaled and the models are trained on a low resolution CelebA32. These
constraints come from ACNP’s large memory footprint.

A.4 Image Experimental Details and Additional Results 147

(a) MNIST (b) SVHN

(c) CelebA 32× 32
(d) CelebA 64× 64

Fig. A.5 Log-likelihood and qualitative comparisons between ACNP and ConvCNP on four
standard benchmarks. The top row shows the log-likelihood distribution for both models.
The images below correspond to the context points (top), ConvCNP target predictions
(middle), and ACNP target predictions (bottom). Each column corresponds to a given
percentile of the ConvCNP distribution. ACNP could not be trained on CelebA64 due to
its memory inefficiency.

Model MNIST SVHN CelebA32 CelebA64 ZSMM
ConvCNP 1.19 ±0.01 3.89 ±0.01 3.19 ±0.02 3.64 ±0.01 1.21 ±0.00
. . . no density 1.15 ±0.01 3.88 ±0.01 3.15 ±0.02 3.62 ±0.01 1.13 ±0.08
. . . no norm. 1.19 ±0.01 3.86 ±0.03 3.16 ±0.03 3.62 ±0.01 1.20 ±0.01
. . . no abs. 1.15 ±0.02 3.83 ±0.02 3.08 ±0.03 3.56 ±0.01 1.15 ±0.01
. . . no abs. norm. 1.19 ±0.01 3.86 ±0.03 3.16 ±0.03 3.62 ±0.01 1.20 ±0.01
. . . EQ 1.18 ±0.00 3.89 ±0.01 3.18 ±0.02 3.63 ±0.01 1.21 ±0.00

Table A.3 Log-likelihood from image ablation experiments (6 runs).

constraints (ConvCNP no abs.), removing the positivity constraints and the normal-

148 Chapter 3 Supplementary Material

Fig. A.6 Qualitative evaluation of a ConvCNP (center) and ACNP (right) trained on
CelebA32 and tested on a downscaled version (146× 259) of Ellen’s Oscar selfie (DeGeneres,
2014) with 20% of the pixels as context (left).

ization (ConvCNP no abs. norm.), and replacing the fully trainable first layer by an
EQ kernel similar to the continuous case (ConvCNP EQ).

Table A.3 shows the following: (i) Appending a density channel helps. (ii) Enforcing
the positivity constraint is only important when using a normalized convolution.
(iii) Using a less expressive EQ filter does not significantly decrease performance,
suggesting that the model might be learning similar filters (Section A.4.5).

A.4.5 Qualitative Analysis of the First Filter

As discussed in Section A.4.4, using a less expressive EQ filter does not significantly
decrease performance. Figure A.7 shows that this happens because the fully trainable
kernel learns to approximate the EQ filter.

A.4.6 Effect of Receptive Field on Translation Equivariance

As seen in Table 3.3, a ConvCNPXL with large receptive field performs signifi-
cantly worse on the ZSMM task than ConvCNP, which has a smaller receptive
field. Figure A.8 shows a more detailed comparison of the models, and suggests that
ConvCNPXL learns to model non-stationary behaviour, namely that digits in the
training set are centred. We hypothesize that this issue stems from the the treatment
of the image boundaries. Indeed, if the receptive field is large enough and the padding
values are significantly different than the inputs to each convolutional layer, the model
can learn position-dependent behaviour by “looking” at the distance from the padded
boundaries.

For ZSMM, Figure A.9 suggests that “circular” padding, where the padding is
implied by tiling the image, helps prevent the model from learning non-stationarities,
even as the size of the receptive field becomes larger. We hypothesize that this is due
to the fact that “circularly” padded values are harder to distinguish from actual values

A.4 Image Experimental Details and Additional Results 149

Fig. A.7 First filter learned by ConvCNPXL, ConvCNP, and ConvCNP EQ for all our
datasets. In the case of RGB images, the plotted filters are for the first channel (red). Note
that not all filters are of the same size.

than zeros. We have not tested the effect of padding on other datasets, and note that
“circular” padding could result in other issues.

150 Chapter 3 Supplementary Material

Fig. A.8 Log-likelihood and qualitative results on ZSMM. The top row shows the log-likelihood
distribution for both models. The images below correspond to the context points (top),
ConvCNP target predictions (middle), and ConvCNPXL target predictions (bottom).
Each column corresponds to a given percentile of the ConvCNP distribution.

Fig. A.9 Effect of the receptive field size on ZSMM’s log-likelihood. The line plot shows the
mean and standard deviation over 6 runs. The blue curve corresponds to a model with zero
padding, while the orange one corresponds to “circular” padding.

Appendix B

Chapter 4 Supplementary Material

B.1 Formal Definitions and Set-up

Notation. We first review the notation introduced in the main body for convenience.
Let X = Rdin and Y = R denote the input and output spaces respectively, and let
(x, y) denote a generic input-output pair (higher-dimensional outputs can be treated
easily). Define SN = (X × Y)N to be the collection of all data sets of size N , and let
S := ⋃∞

N=1 SN . Let D(c), D(t) ∈ S denote a context and target set respectively. Later,
as is common in recent meta-learning approaches, we will consider predicting the target
set from the context set Garnelo et al. (2018a,b). Let x(c) = (x1, . . . , xN) denote a
collection (matrix) of context set inputs, with y(c) = (y1, . . . , yN) the corresponding
outputs; x(t),y(t) are defined analogously. We denote a single task as ξ = (D(c), D(t)) =
(D(c), (x(t),y(t))).

Stochastic processes. For our purposes, a stochastic process on X will be defined
as a probability measure on the set of functions from X → R, i.e. RX , equipped with
the product σ-algebra of the Borel σ-algebra over each index point (Tao, 2011), denoted
Σ. The measurable sets of Σ are those which can be specified by the values of the
function at a countable subset I ⊂ X of its input locations. Since in practice we only
ever observe data at a finite number of points, this is sufficient for our purposes. We
denote the set of all such measures as P(X). We model the world as having a ground
truth stochastic process P ∈ P(X). Consider a Kolmogorov-consistent collection of
distributions on finite index sets I ⊂ X . By the Kolmogorov extension theorem, there
exists a unique measure on (RX ,Σ) that has these distributions as its finite marginals.
Hence we may think of these stochastic processes as defined by their finite-dimensional
marginals.

152 Chapter 4 Supplementary Material

B.2 Stationary Processes and Translation Equivari-
ance

Definition 5 (Translating data sets and SPs). We define the action of the translation
operator Tτ on data sets and SPs, where τ ∈ X denotes the shift vector of the
translation.1

1. Let (xn, yn)Nn=1 = S ∈ S. For the index set x = (x1, . . . , xn), the translation by
τ is defined as Tτx = (x1 + τ , . . . , xn + τ). Similarly, TτS := (xn + τ , yn)Nn=1.

2. For a function f ∈ RX , define Tτf(x) := f(x− τ) for all x ∈ X . Let F ∈ Σ be a
measurable set of functions. Then TτF := {Tτf : f ∈ F}.

3. For any SP P ∈ P(X), we now define TτP by setting2 TτP (F) := P (T−τF) for
all F ∈ Σ.

Definition 6 (Stationary SP). We say a stochastic process is (strictly) stationary if
the densities of its finite marginals satisfy

p(y(t)|x(t)) = p(y(t)|Tτx(t)) (B.1)

for all y(t), x(t) and τ .

Definition 7 (Translation equivariant prediction maps). We say that Ψ: S → P(X)
is translation equivariant if Ψ(TτS) = TτΨ(S) for any data set S ∈ S and shift τ ∈ X .

The following simple statement highlights the link between stationarity and trans-
lation equivariance:

Proposition 9. Let P be a stationary SP. Then the prediction map πP is translation
equivariant.3

Proof. Let p(y(t)|x(t), D(c)) denote the finite dimensional density of πP (D(c)) at index set
x(t). To show that πP (TτD(c)) = TτπP (D(c)) it suffices to show that p(y(t)|x(t), TτD

(c)) =
1To prevent notational clutter, the same symbol, Tτ , will denote translations on multiple kinds of

objects.
2This is well-defined since Σ is closed under translations. Equivalently, we could define Tτ P as the

push-forward of P under the the translation map on functions, Tτ : RX → RX .
3We exclude conditioning on observations that have zero density, so that the prediction map is

well defined.

B.3 Translation Equivariance of the ConvLNP 153

p(y(t)|T−τx(t), D(c)). We have

p(y(t)|x(t), TτD
(c)) = p(y(t),y(c)|X(t), Tτx

(c))
p(y(c)|Tτx(c))

= p(y(t),y(c)|T−τx
(t),x(c))

p(y(c)|x(c))
= p(y(t)|T−τx(t), D(c)),

where we used the stationarity assumption in the second line.

B.3 Translation Equivariance of the ConvLNP

We prove that the ConvLNP is a translation equivariant map from data sets to
stochastic processes, by proving that the decoder and encoder are separately translation
equivariant. In this section we suppress the dependence on parameters (ϕ,θ).

Lemma 1. Let d be a measurable, translation equivariant map from (RX ,Σ) to
(RX ,Σ). The ConvLNP decoder D : P(X)→ P(X), defined by D(P) = d∗(P), where
d∗(P) is the pushforward measure under d, is translation equivariant.

Proof. Let F ∈ Σ be measurable. Then:

D(TτP)(F) (a)= TτP (d−1(F))
= P (T−τd−1(F))
(b)= P (d−1(T−τF))
= D(P)(T−τF)
= TτD(P)(F).

154 Chapter 4 Supplementary Material

Here (a) follows from definition of the pushforward, and (b) follows because

T−τd
−1(F) = T−τ{f : d(f) ∈ F}

= {T−τf : d(f) ∈ F}
= {f : d(Tτf) ∈ F}
= {f : Tτd(f) ∈ F}
= {f : d(f) ∈ T−τF}
= d−1(T−τF).

Lemma 2. The ConvLNP encoder E (a ConvCNP), is a translation equivariant map
from data sets to stochastic processes.

Proof. Recall that the mean and variance µ(·, S), σ2(·, S) (viewed as maps from S →
Cb(X)) of the encoder E are both given by ConvDeepSets. Due to the translation
equivariance of ConvDeepSets (Gordon et al., 2020, Theorem 1), µ(·, TτS) = Tτµ(·, S)
for all S, τ , and similarly for σ2. Let F ∈ Σ. Then since the measure E(S) ∈ PN(X)
is defined entirely by its mean and variance function, E(TτS)(F) = E(S)(T−τF) =
TτE(S)(F).

Noting that a composition of translation equivariant maps is itself translation
equivariant, we obtain the following proposition:

Proposition 10. Define ConvLNP = D◦E. Then ConvLNP is a translation equivariant
map from data sets to stochastic processes.

B.4 Experimental Details on 1D Regression

For the full results of the 1D regression tasks, see Section B.5. Code to reproduce the 1D
regression experiments can be found at https://github.com/wesselb/NeuralProcesses.jl.

In the 1D regression experiments, we consider the following generative processes:

EQ: samples from a Gaussian process with the following exponentiated-
quadratic kernel:

k(t, t′) = exp
(
−1

8(t− t′)2
)

;

https://github.com/wesselb/NeuralProcesses.jl

B.4 Experimental Details on 1D Regression 155

Matérn–5
2 : samples from a Gaussian process with the following Matérn–5

2 kernel:

k(t, t′) =
(

1 + 4
√

5d+ 5
3d

2
)

exp
(
−
√

5d
)

with d = 4|x− x′|;

noisy mixture: samples from a Gaussian process with the following noisy mixture
kernel:

k(t, t′) = exp
(
−1

8(t− t′)2
)

+ exp
(
−1

2(t− t′)2
)

+ 10−3δ[t− t′];

weakly periodic: samples from a Gaussian process with the following weakly-periodic
kernel:

k(t, t′) = exp
(
−1

2(f1(t)− f1(t′))2 − 1
2(f2(t)− f2(t′))2 − 1

8(t− t′)2
)

with f1(t) = cos(8πt) and f2(t) = sin(8πt); and

sawtooth: samples from the following sawtooth process:

f(t) = A

2 −
A

π

K∑
k=1

(−1)k sin(2πkf(t− s))
k

with A = 1, f ∼ U [3, 5], s ∼ U [−5, 5], and K ∈ {10, . . . , 20} chosen
uniformly.

We compare the following models, where all activation functions are leaky ReLUs
with leak 0.1:

ConvCNP: The first model is the ConvCNP. The architecture of the ConvCNP
is equal to that of the encoder in the ConvLNP, described next.

ConvLNP: The second model is the ConvLNP as described in the main body.
The functional embedding uses separate length scales for the data
channel and density channel (Figure 4.2), which are initialized to
twice the inter-point spacing of the discretization and learned dur-
ing training. The discretization uniformly ranges over [min(x) −
1,max(x) + 1] at density ρ = 64 points per unit, where min(x) is the
minimum x value occurring in the union of the context and target
sets in the current batch and max(x) is corresponding maximum x

156 Chapter 4 Supplementary Material

value. The discretization is passed through a 10-layer (excluding an
initial and final point-wise linear layer) CNN with 64 channels and
depthwise-separable convolutions. The width of the filters depends
on the data set and is chosen such that the receptive field sizes are
as follows:

EQ: 2,

Matérn–5
2 : 2,

noisy mixture: 4,

weakly periodic: 4,

sawtooth: 16.

The discretized functional representation consists of 16 channels. The
smoothing at the end of the encoder also has separate length scales
for the mean and variance which are initialized similarly and learned.
The encoder parametrizes the standard deviations by passing the
output of the CNN through a softplus. The decoder has the same
architecture as the encoder.

ALNP: The third model is the Attentive NP with latent dimensionality
d = 128 and 8-head dot-product attention (Vaswani et al., 2017).
In the attentive deterministic encoder, the keys (t), queries (t), and
values (concatenation of t and y) are transformed by a three-layer
MLP of constant width d. The dot products are normalised by

√
d.

The output of the attention mechanism is passed through a constant-
width linear layer, which is then passed through two layers of layer
normalization (Ba et al., 2016) to normalise the latent representation.
In the first of these two layers, first the transformed queries are passed
through a constant-width linear layer and added to the input. In
the second of these two layers, the output of the first layer is first
passed through a two-layer constant-width MLP and added to itself,
making a residual layer. In the stochastic encoder, the inputs and
outputs are concatenated and passed though a three-layer MLP of
constant width d. The result is mean-pooled and passed through a
two-layer constant-width MLP. The decoder consists of a three-layer
MLP of constant width d.

B.4 Experimental Details on 1D Regression 157

EQ Matérn–5
2 Noisy Mixt. Weakly Per. Sawtooth

ConvCNP 42 822 42 822 51 014 51 014 100 166
ConvLNP 88 486 88 486 104 870 104 870 203 174

ALNP 530 178 530 178 530 178 530 178 530 178
LNP 479 874 479 874 479 874 479 874 479 874

Table B.1 Parameter counts for the ConvCNP, ConvLNP, ALNP, and LNP in the 1D
regression tasks

NP: The fourth model is the original NP (Garnelo et al., 2018b). The
architecture is similar to that of the ALNP, where the architecture
of the deterministic encoder is replaced by that of the stochastic
encoder.

For all models, positivity of the observation noise is enforced with a softplus function.
Parameter counts of the ConvCNP, ConvLNP, ALNP, and NP are listed in Table B.1.

The models are trained with LML (L = 20) and LLNP (L = 5). For LLNP, the
context set is appended to the target set when evaluating the objective. The models
are optimised using ADAM with learning rate 5 · 10−3 for 100 epochs. One epoch
consists of 214 tasks divided into batches of size 16. For training, the inputs of the
context and target sets are sampled uniformly from [−2, 2]. The size of the context set
is sampled uniformly from {0, . . . , 50} and the size of the target set is fixed to 50. To
encourage the NP-based models—not the CNP-based models—to fit and not revert to
their conditional variants, the observation noise standard deviation σ is held fixed to
10−2 for the first 20 epochs.

For evaluation, the size of the context set is sampled uniformly from {0, . . . , 10}, and
the losses are evaluated with L = 5000 and batch size one. To test interpolation within
the training range, the inputs of the context and target sets are, like training, sampled
uniformly from [−2, 2]. To test interpolation beyond the training range, the inputs of
the context and target sets are sampled uniformly from [2, 6]. To test extrapolation
beyond the training range, the inputs of the context sets are sampled uniformly from
[−2, 2] and the inputs of the target sets are sampled uniformly from [−4,−2]∪ [2, 4]. As
described in Section 4.4.4, models trained with LLNP are evaluated using importance
weighting to obtain a better estimate of the evaluation loss.

158 Chapter 4 Supplementary Material

B.5 Additional Results on 1D Regression

Table B.2 presents results for all models with all losses on all data sets described in
Section B.4 according to the evaluation protocol described in Sections B.4 and 4.4.4.

B.6 Experimental Details on Image Completion

B.6.1 Data Details

(a) Train (32× 32) (b) Test (56× 56)

Fig. B.1 Samples from our generated Zero Shot Multi MNIST (ZSMM) data set.

We use three standard data sets throughout our image experiments: SVHN (Netzer
et al., 2011), MNIST LeCun et al. (1989), and 32× 32 CelebA Netzer et al. (2011).
The aforementioned standard data sets all contain only a single, well-centered object.
To evaluate the translation equivariance and generalization capabilities of our model
we evaluate on a Zero Shot Multi-MNIST (ZSMM) task, which is similar to ZSMM
described in Appendix D.2 of Gordon et al. (2020). Namely, we generate a test set by
randomly sampling with replacement 10000 pairs of digits from the MNIST test set,
place them on a black 56× 56 background, and translate the digits in such a way that
the digits can be arbitrarily close but cannot overlap (Figure B.1b). The difference
with the dataset from Gordon et al. (2020), is that the training set consists of the
standard MNIST digits (instead of a single digit placed in the center of 56× 56 canvas),
augmented by up to 4 pixel shifts (Figure B.1a). The model thus has to generalize
both to a larger canvas size as well as to seeing multiple digits.

B.6 Experimental Details on Image Completion 159

EQ Matérn– 5
2 Noisy Mixt. Weakly Per. Sawtooth

Interpolation inside training range
GP (full) 5.80 ± 0.02 1.22 ± 6.3e –3 1.00 ± 4.1e –3 –0.06 ± 4.6e –3 N/A
GP (diag) –0.59 ± 0.01 –0.84 ± 9.0e –3 –0.89 ± 0.01 –1.17 ± 5.2e –3 N/A
ConvCNP –0.70 ± 0.02 –0.88 ± 0.01 –0.92 ± 0.02 –1.19 ± 7.0e –3 1.15 ± 0.04

ConvLNP LML –0.30 ± 0.02 –0.58 ± 0.01 –0.55 ± 0.01 –1.02 ± 6.0e –3 2.30 ± 0.01
ALNP LML –0.52 ± 0.01 –0.73 ± 0.01 –0.69 ± 0.01 –1.14 ± 6.0e –3 0.09 ± 3.0e –3
NP LML –0.84 ± 9.0e –3 –0.96 ± 7.0e –3 –0.93 ± 9.0e –3 –1.23 ± 5.0e –3 –0.02 ± 2.0e –3

ConvLNP LNP –0.50 ± 0.02 –0.77 ± 0.01 –0.48 ± 0.02 –1.03 ± 8.0e –3 2.47 ± 8.0e –3
ALNP LNP –0.82 ± 0.01 –0.96 ± 0.01 –1.04 ± 0.01 –1.37 ± 6.0e –3 0.20 ± 9.0e –3
NP LNP –0.58 ± 9.0e –3 –1.00 ± 9.0e –3 –0.72 ± 0.01 –1.22 ± 5.0e –3 –0.16 ± 2.0e –3

Interpolation beyond training range
GP (full) 5.80 ± 0.02 1.22 ± 6.3e –3 1.00 ± 4.1e –3 –0.06 ± 4.6e –3 N/A
GP (diag) –0.59 ± 0.01 –0.84 ± 9.0e –3 –0.89 ± 0.01 –1.17 ± 5.2e –3 N/A
ConvCNP –0.69 ± 0.02 –0.87 ± 0.01 –0.94 ± 0.02 –1.19 ± 7.0e –3 1.11 ± 0.04

ConvLNP LML –0.30 ± 0.02 –0.58 ± 0.01 –0.56 ± 0.01 –1.03 ± 6.0e –3 2.29 ± 0.02
ALNP LML –1.35 ± 6.0e –3 –1.39 ± 7.0e –3 –1.65 ± 5.0e –3 –1.35 ± 4.0e –3 –0.17 ± 1.0e –3
NP LML –2.70 ± 3.0e –3 –2.60 ± 3.0e –3 –2.82 ± 3.0e –3 - –0.03 ± 2.0e –3

ConvLNP LNP –0.48 ± 0.02 –0.79 ± 0.01 –0.48 ± 0.02 –1.04 ± 8.0e –3 2.47 ± 8.0e –3
ALNP LNP –1.91 ± 0.03 –1.48 ± 4.0e –3 –1.85 ± 7.0e –3 –1.66 ± 0.01 –0.30 ± 4.0e –3
NP LNP –13.7 ± 0.82 –3.96 ± 0.04 –3.80 ± 0.02 - –4.98 ± 0.02

Extrapolation beyond training range
GP (full) 4.29 ± 6.2e –3 0.82 ± 4.3e –3 0.66 ± 2.2e –3 –0.33 ± 3.4e –3 N/A
GP (diag) –1.40 ± 5.0e –3 –1.41 ± 4.8e –3 –1.72 ± 6.2e –3 –1.40 ± 4.0e –3 N/A
ConvCNP –1.41 ± 6.0e –3 –1.41 ± 7.0e –3 –1.73 ± 8.0e –3 –1.41 ± 6.0e –3 0.27 ± 0.02

ConvLNP LML –1.09 ± 5.0e –3 –1.11 ± 5.0e –3 –1.30 ± 4.0e –3 –1.24 ± 4.0e –3 1.61 ± 0.02
ALNP LML –1.29 ± 6.0e –3 –1.29 ± 5.0e –3 –1.55 ± 5.0e –3 –1.34 ± 5.0e –3 –0.25 ± 2.0e –3
NP LML –2.23 ± 4.0e –3 –2.08 ± 3.0e –3 –2.50 ± 4.0e –3 –1.39 ± 4.0e –3 –0.06 ± 2.0e –3

ConvLNP LNP –1.21 ± 0.01 –1.31 ± 0.01 –1.19 ± 0.01 –1.51 ± 8.0e –3 2.10 ± 7.0e –3
ALNP LNP –1.44 ± 6.0e –3 –1.45 ± 6.0e –3 –1.77 ± 7.0e –3 –1.46 ± 6.0e –3 –0.20 ± 2.0e –3
NP LNP –5.85 ± 0.05 –2.65 ± 3.0e –3 –4.06 ± 0.04 –1.49 ± 5.0e –3 –1.99 ± 6.0e –3

Table B.2 Log-likelihood for ConvCNP, ConvLNP, ALNP, and NP. Each of the stochastic
models was trained on each data set with LML and LNP, separately.

160 Chapter 4 Supplementary Material

For all data sets, pixel values are divided by 255 to rescale them to the [0, 1] range.
We evaluate on predefined test splits when available (MNIST, SVHN, ZSMM) and
make our own test set for CelebA by randomly selecting 10% of the data. For each
dataset we also set aside 10% of the training set as validation.

B.6.2 Training Details

In all experiments, we sample the number of context pixels uniformly from U(0, ntotal
2),

and the number of target points is set to ntotal. The weights are optimized using Adam
(Kingma and Ba, 2015) with learning rate 5× 10−4. We use a maximum of 100 epochs,
with early stopping — based on log likelihood on the validation set — of 10 epochs
patience. Unless stated otherwise, we use L = 16 samples from the latent function
during training, and L = 128 at test time. We clip the L2 norm of all gradients to
1, which was particularly important for ConvLNP. We use a batch size of 32 for all
models besides ALNP trained on ZSMM which used a batch size of 8 due to memory
constraints.

B.6.3 Architecture Details

General architecture details. For all models, we follow Le et al. (2018) and process
the predicted standard deviation of the latent function σz using a sigmoid and the
standard deviation σ of the predictive distribution using lower-bounded softplus:

σz = 0.001 + (1− 0.001) 1
1 + exp(fσ,z)

(B.2)

σ = 0.001 + (1− 0.001) ln(1 + exp(fσ)) (B.3)

As the pixels are rescaled to [0, 1], we also process the mean of the posterior predictive
(conditioned on a single sample) to be in [0, 1] using a logistic function

µ = 1
1 + exp(−fµ) (B.4)

In the following, we describe the architecture of ALNP and ConvLNP. Unless stated
otherwise, all vectors in the following paragraphs are in R128 and all MLPs have 128
hidden units.

ALNP details. We provide details for the ALNP trained with LML. As the ALNP
cannot take advantage of the fact that images are on the grid, we preprocess each
pixel so that x ∈ [−1, 1]2. The only exception being for the test set of ZSMM, where

B.6 Experimental Details on Image Completion 161

x ∈ [−56
32 ,

56
32]2 as the model is trained on 32×32 but evaluated on 56×56 images. Each

context feature is first encoded x(c) 7→ r(c)
x by a single hidden layer MLP, while a second

single hidden layer MLP encodes values y(c) 7→ r(c)
y . We produce a representation r(c)

xy

by summing both representations r(c)
x +r(c)

y and passing them through two self-attention
layers (Vaswani et al., 2017). Following Parmar et al. (2018), each self-attention layer
is implemented as 8-headed attention, a skip connection, and two layer normalizations
(Ba et al., 2016). To predict values at each target point t, we embed x(t) 7→ r(t)

x using
the hidden layer MLP used for r(c)

x . A deterministic target representation r(t)
xy is then

computed by applying cross-attention (using an 8-headed attention described above)
with keys K := {r(c)

x }Cc=1, values V := {r(c)
xy }Cc=1, and query q := r(t)

x . For the latent
path, we average over context representations r(c)

xy , and pass the resulting representation
through a single hidden layer MLP that outputs (µz,σz) ∈ R256. σz is made positive
by post-processing it using Equation (B.2). We then sample (with reparametrization
(Kingma and Welling, 2014)) L latent representation zℓ ∼ N (z;µz,σ2

z).
We describe the remainder of the forward pass for a single zℓ, though in practice

multiple samples may be processed in parallel. The deterministic and latent repre-
sentations of the context set are concatenated, and the resulting representation is
passed through a linear layer [r(t)

xy ; zℓ]→ r(t)
xyz ∈ R128. Given the target and context-set

representations, the predictive posterior is given by a Gaussian pdf with diagonal
covariance parametrised by (µ(t),σ(t)

pre) = decoder([r(t)
x ; r(t)

xyz]) where µ(t),σ(t)
pre ∈ R3 and

decoder is a 4 hidden layer MLP. Finally, the σ(t) is processed by Equation (B.3)
using Equation (B.4). In the case of MNIST and ZSMM, σ(t) is also spatially mean
pooled, which corresponds to using homoskedastic noise. This improves the qualitative
performance by forcing ALNP and ConvLNP to model the digit instead of focusing on
predicting the black background with high confidence. Kim et al. (2019) did not suffer
from that issue as they used a much larger lower bound for Equation (B.3).

ConvLNP details. The core algorithm of on-the-grid ConvLNP is outlined in
Algorithm 5 as well as Algorithm 3. Here we discuss the parametrizations used for each
step of the algorithm. All convolutional layers are depthwise separable (Chollet, 2017).
convθ is a convolutional layer with kernel size of 11 (no bias). Following Gordon et al.
(2020), we enforce positivity on the weights in the first convolutional layer by only
convolving their absolute value with the signal.

The CNNs are ResNets (He et al., 2016) with 9 blocks, where each convolution has
a kernel size of 3. Each residual block consists of two convolutional layers, pre-activation
batch normalization layers Ioffe and Szegedy (2015), and ReLU activations. The output
of the pre-latent CNN (CNN in Algorithm 3) goes through a single hidden layer MLP

162 Chapter 4 Supplementary Material

that outputs (µz,σz) ∈ R256. As with ALNP, fσ,z is processed by Equation (B.2) and
then used to sample (with reparametrization (Kingma and Welling, 2014)) L latent
functions Zℓ. Importantly, we found that the coherence of samples improves if the model
uses a global representation in addition to the the pixel dependent representation. We
achieve this by mean-pooling half of the functional representation. Namely, we replace
zℓ by the channel-wise concatenation of z(1:64)

ℓ and mean(z(65:128)
ℓ), where the mean is

taken over the spatial dimensions. This latent function then goes through the post-
latent CNN (CNN in Algorithm 5), as well as a linear layer to output (fµ, fσ) ∈ R256.
As for ALNP fµ is processed by Equation (B.4) and fσ is re-scaled with Equation (B.3)
and is spatially pooled in the case of MNIST and ZSMM to obtain homoskedastic
noise.

B.7 Additional results on image completion.

We provide additional qualitative samples and quantitative analyses for the ConvLNP
and ALNP.

Additional ConvLNP samples. Figure B.2 provides further samples from a
ConvLNP trained with LML. We observe that the ConvLNP produces reasonably diverse
yet coherent samples when evaluated in a regime that resembles the training regime
(in the first four sub-columns of MNIST, SVHN, and CelebA). However, Figure B.2
also demonstrates that the ConvLNP struggles with context sets that are significantly
different from those seen during training.

Further comparisons of ALNP and ConvLNP. We provide further qualitative
comparisons of ConvLNPs, ALNPs trained with LML, and ALNPs trained with LLNP.
We omit ConvLNPs trained with LLNP as these are significantly outperformed by
ConvLNPs trained with LML (see e.g. Table 4.2).

Figure B.3 shows that all models perform relatively well when context sets are
drawn from a similar distribution as employed during training (first four sub-columns
of MNIST, SVHN, and CelebA). Furthermore, we observe that samples from the
ConvLNP prior tend to be closer to samples from the underlying data distribution (e.g.
for CelebA).

The qualitative advantage of ConvLNP is most significant in settings that require
translation equivariance for generalization. Figure B.3 row 2 (ZSMM) clearly demon-
strates that ConvLNP generalizes to larger canvas sizes and multiple digits, while
ALNP attempts to reconstruct a single digit regardless of the context set. Finally,

B.8 Experimental Details on Environmental Data 163

Figure B.4 provides the test log-likelihood distributions of ALNP and ConvLNP as
well as some qualitative comparisons between the two.

B.8 Experimental Details on Environmental Data

B.8.1 Data Details

Central (train) Western (test) Eastern (test) Southern (test)
Latitudes (52, 46) (50, 46) (52, 49) (46, 42)
Longitudes (08, 28) (01, 08) (28, 35) (19, 26)

Table B.3 Coordinates for boxes defining the train and test regions. Latitidues are given as
(north, south), and longitudes as (west, east).

ERA5-Land (Service, 2020) contains high resolution information on environmental
variables at a 9 km spacing across the globe.4 The data we use contains daily mea-
surements of accumulated precipitation at 11pm and temperature at 11pm at every
location, between 1981 and 2020, yielding a total of 14,304 temporal measurements
across the spatial grid. In addition, we provide orography (elevation) values for each
location. We normalize the data such that the precipitation values in the train set
have zero mean and unit standard deviation.

We consider the task of predicting daily precipitation y, with latitude and longitude
as x. In addition, at each context and target location, we provide the model with
access to side information in the form of orography (elevation) and temperature values.
We also normalize the orography and temperature values to have zero mean and unit
standard deviation. We choose a large region of central Europe as our train set, and
use regions East, West and South of the train set as held out test sets (see Figure B.5
and Table B.3). At train time, to sample a task, we first sample a random date between
1981 and 2020. We then sample a square subregion of grid of values from within the
train region (which has size 61× 201). We consider two models, one trained on 28× 28
subregions, and another trained on 40× 40 subregions. During training, each subregion
is then split into context and target sets. Context points are randomly chosen with
a keep rate pkeep with pkeep ∼ U [0, 0.3]. In this section, we train only on the LML

objective.
4URL: https://www.ecmwf.int/en/era5-land. Neither the European Commission nor ECMWF is

responsible for any use that may be made of the Copernicus Information or data it contains.

https://www.ecmwf.int/en/era5-land

164 Chapter 4 Supplementary Material

B.8.2 Gaussian Process Baseline

We mean-centre the data for each task for the GP before training, and add the mean
offset back for evaluation and sampling. We use an Automatic Relevance Determination
(ARD) kernel, with separate factors for latitude/longitude, temperature and orography.
In detail, let x = (xlat, xlon) denote position, and let ω, t denote orography and
precipitation respectively, and let r := (x, ω, t). Then the kernel is given by

k(r, r′) = σ2
vkℓ(x,x′)kω(ω, ω′)kt(t, t′) + σ2

nδ(r, r′).

Here each of kℓ, kω and kt are Matérn–5
2 kernels with separate learnable lengthscales;

δ(r, r′) = 1 if r = r′ and 0 otherwise; and σ2
v , σ

2
n are learnable signal and noise variances

respectively. We learn all hyperparameters by maximising the log-marginal likelihood
using Scipy’s implementation of L-BFGS.

Transforming the data. As the data is non-negative, we considered applying
the transform y 7→ log(ϵ + y) for the GP to model. If ϵ = 0, this would guarantee
that the GP would only yield positive samples, which would be physically sensible
as precipitation is non-negative. However, this cannot be done as precipitation often
takes the value y = 0, which would lead to the transform being undefined. On the
other hand, if ϵ > 0, the GP samples after performing the inverse transform could still
predict a precipitation value as low as −ϵ, which is still unphysical. Further, a small
value of ϵ leads to large distortion of the y values in transformed space. In the end, we
run all experiments for the GP and NP without log-transforming the data; hence the
models have to learn non-negativity.

B.8.3 ConvLNP Architecture and Training Details

As the ERA5-Land dataset is regularly spaced, we use the on-the-grid version of
the architecture, without the need for an RBF smoothing layer at the input. All
experiments used a convolutional architecture with 3 residual blocks (He et al., 2016)
for the encoder and 3 residual blocks for the decoder. Each residual block is defined
with two layers of ReLU activations followed by convolutions, each with kernel size 5.
The first convolution in each block is a standard convolution layer, whereas the second
is depthwise separable (Chollet, 2017). All intermediate convolutional layers have 128
channels, and the latent function z has 16 channels. The networks were trained using
ADAM with a learning rate of 10−4. We used 16 channels for the latent function z,
and estimated LML using 16-32 samples at train time, with batches of 8-16 images.

B.8 Experimental Details on Environmental Data 165

We train the models for between 400 and 500 epochs, where each epoch is defined
as a single pass through each day in the training set, where at each day, a random
subregion of the full 61 × 201 central Europe region is cropped. We estimated the
predictive density using 2500 samples of z during test time.

B.8.4 Prediction and Sampling

To create Table 4.3, at test time we sample 28×28 subregions from each of the train and
test regions. This is done 1000 times. For the GP, we randomly restart optimisation 5
times per task and use the best hyper-parameters found. In order to remove outliers
where the GP has very poor likelihood, we set a log-likelihood threshold for the GP. If
the GP has a log-likelihood of less than 0 nats on a particular task, then that task is
removed from the evaluation.

We find that to produce high quality samples, we need to train the model on
subregions that are roughly as large as the lengthscale of the precipitation process.
Hence we sample from the model trained on 40× 40 subregions in Figure 4.7 in the
main body. We show samples from the model trained on both 28× 28 subregions and
40× 40 subregions in Section B.9. We also compare to samples from GPs trained on
each context set (no random restarts were used for sampling).

B.8.5 Bayesian Optimization

We use the models described in Section B.8.3, trained on random 28× 28 subregions
of the train region, and compare to the GP baselines described in Section B.8.2. For
the Bayesian optimization experiments in Figure 4.8 in the main body, we do not
perform random restarts as this was too time-consuming. We carry out the Bayesian
optimization (BayesOpt) experiments in each of the four regions: Central (train),
West (test), East (test), and South (test). Each Bayesian optimization “episode” is
defined by randomly sub-sampling a day (uniformly at random between 1981 and
2020), then sampling a sub-region from the tested region. To test the models’ spatial
generalization capacity (where possible), we sub-sample episodes from each of the four
regions with the following sizes: (i) Central: 42x42, (ii) West: 40x40, (iii) East: 28x28,
and (iv) South: 36x36.

Episodes begin from empty sets D(0)
c =, and models sequentially query locations

for t = 1, . . . , 50. Denoting (x(t), y(t)) the query location and queried value at iteration
t, the context set is then updated as D(t)

c = D(t−1)
c ∪ {(x(t), y(t))}. Denoting y as the

complete set of rainfall values in the sub-region, and y(t) as the set of queried values

166 Chapter 4 Supplementary Material

at iteration t, we can define the instantaneous regret as rt = max(y)−max(y(t)
c), and

compute the average regret (plotted in Figure 4.8 in the main text) at the tth iteration
as r̄t = 1

t

∑t
i=1 ri.

B.9 Additional Figures for Environmental Data

B.9.1 Predictive density

Figure B.6 displays the predictive densities for precipitation at different locations,
conditioned on a context set used for testing. The density of the ConvLNP is estimated
using 2500 samples of z. To examine why the ConvLNP outperforms the GP in terms
of log-likelihood, we plot cases where the ConvLNP likelihood is significantly better
than the GP likelihood. We see that this is due to the GP occasionally making very
overconfident predictions compared to the ConvLNP. We also see that the ConvLNP
in a small proportion of cases exhibits very non-Gaussian, asymmetric predictive
distribtuions.

B.9.2 Additional Samples

In this section we show additional samples from the model trained on 28× 28 images
(Figures B.7 and B.8) and also on 40× 40 images (Figures B.9 and B.10). Training on
larger images reduces the occurence of blocky artefacts. Figure 4.7 in the main body
was trained on 40× 40 images. Note that samples shown here are 61× 201, i.e. the
size of the entire central Europe train region.

B.9 Additional Figures for Environmental Data 167

Fig. B.2 Qualitative samples for one of the ConvLNP trained with LML in Table 4.2. From
top to bottom the four major rows correspond to MNIST, ZSMM, SVHN, CelebA32 datasets.
For each dataset and each of the two major columns, a different image is randomly sampled;
the first sub-row shows the given context points (missing pixels are in blue for MNIST and
ZSMM but in black for SVHN and CelebA), while the next three sub-rows show the mean
of the posterior predictive corresponding to different samples of the latent function. To
show diverse samples we select three samples that maximize the average Euclidean distance
between pixels of the samples. From left to right the first four sub-columns correspond to
a context set with 0%, 1%, 3%, 10% randomly sampled context points. In the last two
sub-columns, the context sets respectively contain all the pixels in the left and top half of
the image.

168 Chapter 4 Supplementary Material

(a) ConvNP LML (b) ANP LML (c) ANP LNP

Fig. B.3 Qualitative samples between (a) ConvLNP trained with LML; (b) ANLP trained with
LML; (c) ANLP trained with LLNP. For each model the figure shows the same as Figure B.2.

B.9 Additional Figures for Environmental Data 169

(a) MNIST (b) CelebA32

(c) Zero Shot Multi-MNIST (d) SVHN

Fig. B.4 Log-likelihood and qualitative samples comparing ConvLNP and ALNP trained
with LML on (a) MNIST; (b) CelebA; (c) ZSMM; (d) SVHN. For each sub-figure, the top
row shows the log-likelihood distribution for both models. The images below correspond to
the context points (top), followed by three samples form ConvLNP (mean of the posterior
predictive corresponding to different samples from the latent function), and three samples
from ALNP. Each column corresponds to a given percentile of the ConvLNP test log likelihood
(as shown by green arrows).

170 Chapter 4 Supplementary Material

Fig. B.5 Training (blue) and test (red) regions in Europe, along with orography data from
ERA5Land.

(a) (b)

Fig. B.6 Predictive density at two target points, where the ConvLNP significantly outperforms
the GP. The orange and blue circles show the likelihood of the ground truth target value
under the GP and ConvLNP. Note that as the precipitation values are normalized to zero
mean and unit standard deviation, yt = −0.53 corresponds to no rain. In Figure B.6a, we
see the ConvLNP sometimes produces predictions heavily centered on this value, showing
it has learned the sparsity of precipitation values. In Figure B.6b we see the ConvLNP
predictive distribution is sometimes asymmetric with a heavier positive tail, reflecting the
non-negativity of precipitation.

B.9 Additional Figures for Environmental Data 171

(a) Ground truth data (b) ConvNP sample 1 (c) ConvNP sample 2 (d) ConvNP sample 3

(e) Context set (f) GP sample 1 (g) GP sample 2 (h) GP sample 3

Fig. B.7 Samples from the predictive processes overlaid on central Europe, for a model trained
on random 28× 28 subregions of the full 61× 201 central Europe region. Note some blocky
artefacts in the ConvNP samples due to training on small subregions. Here the GP has overfit
to the orography data, with samples that resemble the orography rather than precipitation.

(a) Ground truth data (b) ConvNP sample 1 (c) ConvNP sample 2 (d) ConvNP sample 3

(e) Context set (f) GP sample 1 (g) GP sample 2 (h) GP sample 3

Fig. B.8 Samples from the predictive processes overlaid on central Europe, for a model trained
on random 28× 28 subregions of the full 61× 201 central Europe region. Here the GP has
learned a lengthscale that is too large.

(a) Ground truth data (b) ConvNP sample 1 (c) ConvNP sample 2 (d) ConvNP sample 3

(e) Context set (f) GP sample 1 (g) GP sample 2 (h) GP sample 3

Fig. B.9 Samples from the predictive processes overlaid on central Europe, for a model
trained on random 40× 40 subregions of the full 61× 201 central Europe region. Here the
GP has overfit to the orography data, with samples that resemble the orography rather than
precipitation.

(a) Ground truth data (b) ConvNP sample 1 (c) ConvNP sample 2 (d) ConvNP sample 3

(e) Context set (f) GP sample 1 (g) GP sample 2 (h) GP sample 3

Fig. B.10 Samples from the predictive processes overlaid on central Europe, for a model
trained on random 40× 40 subregions of the full 61× 201 central Europe region. The GP
has again overfit to the orography data.

172 Chapter 4 Supplementary Material

(a) Ground truth data (b) ConvNP sample 1 (c) ConvNP sample 2 (d) ConvNP sample 3

(e) Context set (f) GP sample 1 (g) GP sample 2 (h) GP sample 3

Fig. B.11 Samples from the predictive processes overlaid on central Europe, for a model
trained on random 40× 40 subregions of the full 61× 201 central Europe region.

Appendix C

Chapter 5 Supplementary Material

C.1 Additional theoretical considerations

In this appendix we provide some additional discussion on theoretical aspects of our
models. In Section C.1.1 we provide a proof for the translation equivariance of the
ConvGNP, which follows from the fact that the ConvCNP is translation equivariant. In
Section C.1.2 we provide some additional discussion on composing arbitrary invertible
maps such as Normalising Flows (NFs) with neural processes.

C.1.1 Translation equivariance of the ConvGNP

In this section of the appendix we provide a proof for the translation equivariance of the
ConvGNP model. The mean function of a ConvGNP has the same form as a ConvCNP
model (Gordon et al., 2020) and is thus translation equivariant. It therefore remains
to show that the covariance function of the ConvGNP is also translation equivariant.

As explained in the main text, the covariance of the ConvGNP is computed as
follows. First, a feature function g is applied to the context set and target inputs. This
feature function consists of the following sequence of computations

(x(c),y(c)) 1−→ (x̃,h) 2−→ r = CNND(h) 3−→ g(x(t)
i , r) =

L∑
ℓ=1

ψ(x(t)
i , xr,ℓ) rℓ, (C.1)

where step 1 maps (x(c),y(c)) to a D-dimensional grid of values h with corresponding
locations at x̃ = (x̃1, . . . , x̃L), x̃ℓ ∈ RD, using a SetConv layer (Gordon et al., 2020),
step 2 maps h to r through a CNN with D-dimensional convolutions, and 3 aggregates
r using an RBF ψ. The grid locations x̃ are set using the context and target inputs

174 Chapter 5 Supplementary Material

(see Gordon et al., 2020), according to

x̃ = grid(xmin, xmax), where xmin = min{x(c),x(t)}, xmax = max{x(c),x(t)}. (C.2)

Lastly, the features outputted by g are passed through a positive definite function k to
produce the entries of the covariance

Kij = k(g(x(t)
i , r), g(x(t)

j , r)). (C.3)

To show the translation equivariance of the covariance function, it suffices to show that
if a translation is applied to both the context and target inputs, then the resulting
covariance matrix remains unchanged. In particular, consider applying a translation u
to the context and target inputs

x(c)′ = (x′1(c), . . . , x′N
(c)) = (x(c)

1 + u, . . . , x
(c)
N + u) (C.4)

x(t)′ = (x′1(t), . . . , x′M
(t)) = (x(t)

1 + u, . . . , x
(c)
M + u) (C.5)

and applying g to the translated inputs, according to

(x(c)′,y(c)) 1−→ (x̃′,h′) 2−→ r′ = CNND(h′) 3−→ g(x(t)
i
′, r′) =

L∑
ℓ=1

ψ(x(t)
i
′, x′r,ℓ) r′ℓ. (C.6)

where the grid locations are now x̃′ = (x̃′1, . . . , x̃′L), x̃ℓ ∈ RD, where by substituting
x(c)′,x(t)′ into Equation (C.2) we have

x̃′ = x̃ + u. (C.7)

Now, noting that h′ = h, by the translation equivariance of the SetConv layer (Gordon
et al., 2020) and r′ = r, by the equivariance of the CNN, and substituting these together
with Equations (C.4), (C.5) and (C.7) into Equation (C.6) we obtain

g(x(t)
i
′, r′) =

L∑
ℓ=1

ψ(x(t)
i
′, x′r,ℓ) r′ℓ =

L∑
ℓ=1

ψ(x(t)
i + u, xr,ℓ + u) rℓ =

L∑
ℓ=1

ψ(x(t)
i , xr,ℓ) rℓ = g(x(t)

i , r)

where we have used the stationarity of the RBF ψ. This shows that g is invariant to
translations of the context and target inputs. The covariance function of the ConvGNP
is therefore equivariant, as required.

C.1 Additional theoretical considerations 175

C.1.2 Normalising flows and general invertible maps

Composing Normalising Flows with Neural Processes: In Section 5.3 of the
main text we explained that general arbitrary maps could be composed with neural
processes in an attempt to model joint dependencies and non-Gaussian marginals.
However, requiring a model that is consistent under marginalisation places theoretical
limitations on the form of Θ which we can use.

Theoretical limitations: Suppose we have a Neural Process with prediction map
π(· ;x(c), y(c), x(t)), which we wish to compose with an invertible map Θ. Thus, to draw
a sample from the predictive distribution, we first draw

(u(t)
1 , . . . , u

(t)
M) ∼ π(u(t);x(c), y(c), x(t)), (C.8)

and then apply the marginal transformation

(y(t)
1 , . . . , y

(t)
M) = Θ(u(t)

1 , . . . , u
(t)
M). (C.9)

The role of Θ could be either modelling the marginals of the data, representing joint
dependencies in the output variable, or both. Now, Θ must be able to handle variable-
length tuples as arguments, to handle arbitrary target points. Thus, we should be able
to query Θ with any number M of inputs. In addition, the model should be consistent
under marginalisations: making a joint prediction for target variables y(t)

1 and y
(t)
2 ,

and then marginalising over y(t)
2 , should be equivalent to making a prediction over

y
(t)
1 directly. Put concretely, marginalisation consistency requires that the following

equality in distribution holds

Θ(u(t)
1 , u

(t)
2)i d= Θ(u(t)

i). (C.10)

For a careful choice of Θ and distribution of (u(t)
1 , u

(t)
2) this equality can be true, but

in general will not be true. If we want to construct an invertible Θ such that it gives
a consistent model for all underlying Neural Processes, then that requires the the
stronger condition that

Θ(u(t)
1 , u

(t)
2)i = Θ(u(t)

i) almost surely. (C.11)

From this condition, we see that Θ can only be a marginal transformation because

Θ(u(t)
1 , u

(t)
2) = (Θ(u(t)

1),Θ(u(t)
2)), (C.12)

176 Chapter 5 Supplementary Material

and similarly for other M . Though for a given Neural Process there may exist an
appropriate Θ which satisfies marginalisation consistency, constraining Θ to achieve
this is a challenging research problem, which we found to be beyond the scope of this
paper.

Marginal maps cannot model joint dependencies: We now note that if π is
mean-field and Θ is a marginal transformation, then it follows that the y(t) variables
are independent. Therefore, it is not possible to compose a mean-field CNP with an
NF to model joint dependencies in this way. Instead, we must rely on π for modelling
dependencies, and Θ for learning the marginals.

C.2 Gaussian synthetic experiments

Data generation process: Each synthetic task consists of a collection of datasets
sampled from the same generative process. To generate each of these datasets, we first
determine the number of context and target points. We use a random number between
3 and 50 of context points and a fixed number of 100 target points. For each dataset
we sample the inputs of both the context and target points, that is xc,xt uniformly at
random in the region [−2, 2] for the 1D tasks and in [−2, 2]× [−2, 2] for the 2D tasks.
We then sample the corresponding outputs yc,yt as follows.

Exponentiated Quadratic (EQ): We sample yc,yt from a GP with an EQ
covariance

kEQ(x, x′) = σ2
v exp

(
− 1

2ℓ2 (x− x′)2
)
,

with parameters (σ2
v , ℓ) = (1.00, 1.00).

Matern 5/2: We sample yc,yt from a GP with a covariance

kM(x, x′) = σ2
v

(
1 + r

ℓ
+ r2

3ℓ2

)
exp

(
−r
ℓ

)
, (C.13)

where r = |x− x′|, with parameters (σ2
v , ℓ) = (1.00, 1.00).

Noisy mixture: We sample yc,yt from a GP which is a sum of two EQ kernels

kNM(x, x′) = kEQ,1(x, x′) + kEQ,2(x, x′),

with the following parameters (σ2
v,1, ℓ1) = (1.00, 1.00) and (σ2

v,2, ℓ2) = (1.00, 0.25).

C.2 Gaussian synthetic experiments 177

Weakly periodic: We sample yc,yt from a GP which is the product of an EQ
and a periodic covariance

kWP(x, x′) = kEQ(x, x′) exp
(
−2 sin2(π|x− x′|/p)

ℓ2
p

)
,

with EQ parameters (σ2
v,EQ, ℓp) = (1.00, 1.00) and periodic parameters (p, ℓEQ) =

(0.25, 1.00).
Lastly, for all tasks we add iid Gaussian noise with zero mean and variance σ2

n =
0.052. This noise level was not given to the models, which in every case learned a noise
level from the data. We generate training data for 100 epochs, each consisting of 1024
iterations, each of which contains 8 different tasks. For testing, we use a single epoch
of 1024 iterations, each of 8 different tasks.

Neural architectures for 1D tasks (GNP, AGNP, ANP): For the GNP
model we use a fully connected neural network consisting of an encoder with six hidden
layers of 128 units each, a mean aggregation layer and a decoder with a single hidden
layer, also with 128 units. For the AGNP model, we use the same architecture as for
the GNP model, except the aggregation layer consists of a dot product self-attention
layer (Vaswani et al., 2017). For the ANP model, we follow the same architecture
which was used in Kim et al. (2019), which uses a deterministic and a stochastic path
in the encoder. The deterministic path consists of the same encoder used in the GNP
and AGNP models, while the stochastic path consists of a fully connected network
with two hidden layers of 128 units each. The outputs of the deterministic and the
stochastic paths are concatenated and passed through the same decoder architecture
as for the GNP and the AGNP.

Neural architectures for 1D Gaussian tasks (ConvGNP, ConvNP): We
use the same architecture for all the ConvGNP models. This consists of a SetConv
layer (Gordon et al., 2020), followed by a pointwise linear transformation with a
nonlinearity, a CNN with a UNet architecture (Ronneberger et al., 2015), another
linear transformation, and lastly a SetConv layer for producing the features required
by the mean-field, linear or kvv covariance. The first SetConv maps the context set
to a discretised grid with 64 points per unit, producing two channels at each point on
the grid, referred to as the data and the density channels in Gordon et al. (2020). The
pointwise linear transformation maps the two features outputted by the first SetConv
to eight features which are fed to the UNet network. The UNet itself consists of six

178 Chapter 5 Supplementary Material

regular convolution layers with a kernel size of 5 and a stride of 2, and channel sizes

(cin, cout) = (8, 8), (8, 16), (16, 16), (16, 32), (32, 64),

followed by six layers of transpose convolutions, again with a kernel size of 5, a stride
of 2 and channel sizes

(cin, cout) = (64, 32), (64, 32), (64, 16), (32, 16), (32, 8), (16, 8).

Note the numbers of channels in the transpose convolutions are of the above dimensions
because of the additional connections of the UNet architecture. For the ConvNP model,
we use a similar architecture as for the ConvGNP, except the model contains two
stacked UNet networks. The first SetConv of the ConvNP uses the same discretisation
of 64 points per unit, as the ConvGNP. Then, the first UNet of the ConvNP is the same
as the UNet of the ConvGNP, except it has twice the number of output channels. Half
of these are used as the mean and the other half as the log-variance of 64 independent
Gaussian variables, for each position in the convolution grid. This is followed by
another UNet with the same architecture as the ConvGNP UNet, followed by a linear
transformation and a SetConv layer. The SetConv maps the outputs of the second
UNet and a target input to a mean and a log-variance.

Neural architecture for 1D tasks (FullConvGNP): For the FullConvGNP
we follow Bruinsma et al. (2021), who use a one-dimensional ConvCNP-like for the
predictive mean and another two-dimensional convolutional architecture for the predic-
tive covariance. For the precise algorithm of the FullConvGNP, we refer the reader to
Appendix E.2 of Bruinsma et al.. Here we give the specific details of the CNNs used in
our implementation. Unlike Bruinsma et al., we use UNet-style architectures for both
these CNNs, as opposed to depthwise-separable CNNs, because we find the former to
train much quicker both in terms of wall-clock time as well as number of epochs. For
the mean parametrisation, we use the same architecture as for the ConvGNP, except
this outputs a single feature representing the predictive mean. For the covariance
architecture we use a discretisation of 30 points per unit use a UNet consisting of six
layer of two-dimensional convolutions, with a kernel size of 5× 5, a stride of 2 and the
same numbers of channels that are used in the mean parameterisation, namely

(cin, cout) = (8, 8), (8, 16), (16, 16), (16, 32), (32, 64),

C.3 Predator-prey synthetic experiments 179

followed by six layers of transpose convolutions, also with a kernel size of 5× 5 and
stride of 2, and channel sizes

(cin, cout) = (64, 32), (64, 32), (64, 16), (32, 16), (32, 8), (16, 8).

Neural architectures for 2D tasks (ConvGNP, ConvNP): We use the same
UNet architectures for the 2D tasks as those for the 1D tasks, except the convolutions
are now two-dimensional and the discretisation resolution of the SetConv layer is set
to 32 points per unit.

General notes: We use the same number of features in the output layer of the
GNP, AGNP and ConvGNP models. The mean-field covariance uses two features, one
for the mean and one for the marginal variance of the predictive, while the linear
and kvv models both use the same number of Dg = 512 features for computing the
predictive covariance. We use a learnable homoscedastic noise variable for all models,
and ReLU activation functions for all hidden layers. We optimise all models with
Adam (Kingma and Ba, 2015), using a learning rate of 5 × 10−4. For the ConvNP
we use 10 latent samples to evaluate the loss during training, and 512 samples during
testing. We do not use any weight regularisation.

C.3 Predator-prey synthetic experiments

Data generation process: We broadly follow the method specified in Appendix C.4
of Gordon et al. (2020) for generating data from the Lotka-Volterra model, which uses
the algorithm specified in Gillespie (1977). For each time series, we first sample the
predator birth and death parameters θ1, θ2 and the θ3, θ4 from the distributions

θ1 ∼ 1.00× 10−2 × Uniform(1− ϵ, 1 + ϵ), (C.14)
θ2 ∼ 5.00× 10−1 × Uniform(1− ϵ, 1 + ϵ), (C.15)
θ3 ∼ 5.00× 10−1 × Uniform(1− ϵ, 1 + ϵ), (C.16)
θ4 ∼ 1.00× 10−2 × Uniform(1− ϵ, 1 + ϵ), (C.17)

where ϵ = 0.1. We choose these parameters following Gordon et al. (2020), because
they result in plausible oscillatory as well as transient behaviours of the predator and
prey populations. We then initialise the predator and prey populations at X = 50 and
Y = 100 respectively at time t = 0, and perform a sequence of discrete steps. At each
step one of the following events occur:

180 Chapter 5 Supplementary Material

1. We sample ∆t ∼ Exponential(R−1), where R = θ1XY + θ2X + θ3Y + θ4XY .

2. We sample one of the following events:

(a) A predator is born with probability θ1XY/R, increasing X by 1.

(b) A predator dies with probability θ2X/R, decreasing X by 1.

(c) A prey is born with probability θ3Y/R, increasing Y by 1.

(d) A prey dies with probability θ4XY/R, decreasing Y by 1.

3. Increment t ← t + ∆t and repeat until t = 100 is reached, or when 104 events
occur.

Lastly, we linearly interpolate the predator and prey time series and randomly choose
context and target points from the range [0, t]. We choose a random number of between
1 and 50 context and a fixed number of 100 target points, to produce a dataset. The
linear interpolation is performed because otherwise the algorithm yields many more
context and target points at regions where R is large, however we would like the input
locations of the data to be independent of the event rate R. Lastly we scale the target
outputs by a factor of 102 and add a positive constant of 10−2 to it. The reason for
this last positive constant is that strictly speaking the marginal transformations used
in the ConvGCNP models are not differentiable at 0, and we circumvent this pathology
by adding this constant. We generate training data for 100 epochs, each consisting of
1024 iterations, each of which contains 16 different time series. For testing, we use a
single epoch of 1024 iterations, each of 16 different time series.

Neural architectures for the predator-prey tasks (ConvGNP, ConvNP,
FullConvGNP): We use the same model architectures for the ConvGNP, ConvNP
and FullConvGNP in the predator-prey tasks as those which we used for the 1D
synethtic Gaussian experiments, except we modify the discretisation resolution used
by the various SetConv layers. More specifically, for the SetConvs of the ConvGNP,
the ConvNP and that used in the mean parameterisation of the FullConvGNP, we use
a discretisation of 16 points per time unit. For the SetConv used in the covariance
architecture of the FullConvGNP we use 8 points per unit.

Neural architectures for the ConvGCNPs: For the ConvGCNPs we use
identical architectures as for their ConvGNP counterparts, except we also compose
the model with a marginal transformation. More specifically, we use a marginal
transformation Φ−1

M (ΦG(·),ψ), where ΦM is the CDF of the exponential distribution

ΦM(u) = 1− eu/ψ,

C.4 Electroencephalogram experiments 181

where ψ(·) = ψ(x(c),y(c), ·) is an additional feature outputted by the ConvGNP. To
avoid numerical instabilities during training, we limit ψ to the range [1,∞), by passing
the corresponding raw feature outputted by the ConvGNP through a SoftPlus function
and adding 1 to the result.

General notes: We use the same number of features in the output layer of the
ConvGNP models. The mean-field covariance uses two features, one for the mean and
one for the marginal variance of the predictive, while the linear and kvv models
both use the same number of Dg = 32 features for computing the predictive covariance.
We use a learnable heteroscedastic noise variable for all models, and ReLU activation
functions for all hidden layers. We optimise all models with Adam, using a learning
rate of 5× 10−4. For the ConvNP we use 16 latent samples to evaluate the loss during
training, and 512 samples during testing. We do not use any weight regularisation.

C.4 Electroencephalogram experiments

Details on datasets: For the EEG experiments we use the publicly available EEG
dataset, available on the UCI Datasets1 website. We preprocess the data to remove
invalid time series, leaving us with 7632 time series across 106 subjects. We pool
all 106 subjects together (both control and alcoholic subjects) and sample 86 of the
subjects for training, 10 for validation and 10 for testing. Each time series consists of
256 equispaced measurements over 64 EEG channels, from which we keep the seven
channels with names FZ, F1, F2, F3, F4, F5, F6, following Bruinsma et al. (2020).

Details on datasets for training the meta-models (ConvGNP, ConvNP):
We train each of our meta-models for 1000 epochs, each consisting of 256 iterations, at
each of which the model is presented with a batch 16 different tasks. To generate each
task, we first select a window size W between 1 and 50. We then choose a window
of size W from the 256-long time series, and set the channels FZ, F1, F2 within this
window as context points. All other channels in this window, as well as all seven
channels outside this window are used as context points.

Details on datasets for testing the models (ConvGNP, ConvNP, MOGP):
During the testing phase of the meta-models, and the training phase of the MOGP,
we use the same procedure for generating datasets as that used during the training
phase of the meta-models, except we set the window size to a constant W = 50. We
evaluate the models on the held-out test set. For the meta-models, we use 1 testing
epoch of 256 iterations, each of which consists of presenting 16 tasks to the model. The

1https://kdd.ics.uci.edu/databases/eeg/eeg.data.html

https://kdd.ics.uci.edu/databases/eeg/eeg.data.html
https://kdd.ics.uci.edu/databases/eeg/eeg.data.html

182 Chapter 5 Supplementary Material

MOGP model is trained and tested on individual time series without a meta-learning
component, and is used as a non meta-learnt baseline to illustrate the benefits of
meta-learning. We use 500 randomly sampled tasks, selected in the same way as the
datasets used to test the meta-models. For each task, we fit the hyperparameters and
the mixing matrix parameters on the context set of each dataset individually, and
report the normalised predictive log-likelihood on the target set.

Neural architectures for the EEG tasks (ConvGNP, ConvNP): In these
EEG experiments we use an on-the-grid ConvCNP architecture for the ConvGNP model,
as specified in Gordon et al. (2020). More specifically, an on-the grid architecture
does not require an input SetConv architecture, but instead uses a convolutional
layer with positive-constrained weights. Following this convolution, a linear pointwise
transformation is applied, followed by a UNet CNN, with six convolution and six
transpose convolution layers. All layers use a kernel size of 5 and a stride of 2. The
numbers of channels for the six convolution layers are

(cin, cout) = (16, 32), (32, 64), (64, 128), (128, 256), (256, 512), (512, 1024)

while for the transpose convolutions, the channels are

(cin, cout) = (1024, 512), (1024, 256), (512, 128), (256, 64), (128, 32), (64, 32)

followed by a last linear transformation mapping the output of a CNN to the dimen-
sionality expected by the ConvGNP model. An output SetConv is used to interpolate
the features to off-the-grid locations for purposes such as sampling. For the ConvNP,
we follow the same approach as for the synthetic experiments, and stack two UNets
with a latent variable layer in between. These are then followed by a SetConv for
making off-the-grid predictions.

General notes for the meta-models (ConvGNP, ConvNP): We optimise
both the ConvGNPs and the ConvNP using Adam and a learning rate of 2 × 10−4.
We use early stopping, selecting the model snapshot with the best performance on the
validation set, through all of the 1000 training epochs, as the final model. In no case
did we observe overfitting to the training set, even though we used no weight decay. In
our experiments, we used Dg = 512 features for the linear and kvv models.

Details of the MOGP model: To demonstrate the benefits of the meta-learning
approach, we also compare with a baseline multi-output Gaussian process (MOGP)
model which, for every task separately, is trained from scratch, without a meta-learning
component. To accelerate the training of many MOGP models, we use the approach

C.5 Environmental experiments 183

by Bruinsma et al. (2020); an implementation is openly available on GitHub (link2).
The MOGP models have p = 7 outputs and m = 3 latent processes with EQ kernels
with initial length scales 10−2. All noises are initialised to 10−2. The mixing matrix
and all hyperparameters are optimised using scipy’s implementation of L-BFGS-B.

C.5 Environmental experiments

C.5.1 Experimental design

Experiments are conducted within the VALUE framework (Maraun et al., 2015) to
facilitate comparison to existing downscaling methods. VALUE provides a suite of
experiments for temperature and precipitation downscaling in an idealised framework
mapping from two-degree resolution gridded reanalysis observations to station obser-
vations for daily maximum temperature at 86 locations around Europe. Models are
trained on data from 1979-2003 and evaluated on data from 2003-2008. This mapping
is then able to be applied to low-resolution climate model output to generate high
resolution future projections for downstream tasks. Formally, we predict temperature y
at target (longitude, latitude) location x given low resolution predictors at two degrees
resolution and orographic data at x. We consider three experiments:

1. Europe value only: models are trained on context data from ERA-Interim
reanalysis from 1979-2002 and the 86 VALUE stations, and evaluated at these
same locations for 2003-2008. The purpose of this experiment is to exactly
reproduce the VALUE experiment protocol to facilitate comparison to state of
the art baselines.

2. Europe all: In practice, a key limitation of current downscaling models is that
they can only make predictions at a discrete set of locations determined at
training time. Neural process models offer a significant advantage as the posterior
stochastic process can be queried at an arbitrary location at inference time,
regardless of the availability of training data. To evaluate how well the GNP
models perform making predictions at new locations in the validation period
we design a second experiment where models are trained on context data from
ERA-Interim reanalysis from 1979-2002 and 3043 target stations around Europe,
and evaluated on context data from 2003-2008 at the 86 VALUE stations.

2https://github.com/wesselb/oilmm

https://github.com/wesselb/oilmm
https://github.com/wesselb/oilmm

184 Chapter 5 Supplementary Material

3. Germany only: Germany has the highest density of stations of any country in
Europe. As this is the scenario where modelling correlations between targets is
most likely to improve performance we conduct a final experiment limiting the
domain to Germany. Training is on ERA-Interim reanalysis context data from
1979-2002 and station data from 689 stations around Germany, with evaluation
from 2003-2008 on 250 held out stations.

C.5.2 Data

Consistent with the VALUE protocol, we use the following context and target data:
Context data. Context data are taken from ERA-Interim reanalysis (Dee et al., 2011)
from 1979-2008 with daily temporal resolution and spatial resolution interpolated to
two degrees using bilinear interpolation. We consider 25 variables:

• Surface: maximum temperature, mean temperature, northward and eastward
wind.

• Upper atmosphere (850/700/500 hPa): specific humidity, temperature, northward
and eastward wind.

• Invariant: angle of sub-grid scale orography, anisotropy of sub-grid scale orography,
standard deviation of filtered subgrid orography, standard deviation of orography,
geopotential, longitude, latitude and day of year transformed to (cos(t), sin(t)).

To account for sub-grid-scale topography, the context set also includes topographic
variables at each target location. These include the true elevation, difference between
reanalysis gridscale and true elevation and mTPI (Theobald et al., 2015).

Target data. Target data are taken from weather station observations from 3129
weather stations around Europe reported as part of the European Climate Assessment
Dataset (Klein Tank et al., 2002). This dataset includes daily observations of maximum
temperature from 1979-2008.

C.5.3 Neural architectures and training

For the architectures we follow (Vaughan et al., 2022). The encoder consists of a CNN
with six residual blocks, each consisting of two layers of depth-separable convolutions
(Chollet, 2017) with a kernel size of 3 and 128 channels followed by ReLU activations.
The encoder is followed by a SetConv layer with RBF kernel. Finally, a MLP is used to
update predictions given the elevation of the target locations. This MLP consist of four

C.5 Environmental experiments 185

hidden layers each with 64 units and ReLU activations. For the ConvGNP-linear
and ConvGNP-kvv models we use Dg = 128 features for computing the covariance.
For the ConvNP we use 32 channels for the latent function and 24 samples to calculate
the neural process likelihood at training time. Each model is trained for 500 epochs.

C.5.4 Additional samples

This section shows additional examples similar to Figure 5.10 comparing the ConvCNP
and ConvGNP samples for different days.

Fig. C.1 As for Figure 9, but for 12/01/2003.

Fig. C.2 As for Figure 9, but for 24/02/2003.

186 Chapter 5 Supplementary Material

Fig. C.3 As for Figure 9, but for 06/03/2004.

Fig. C.4 As for Figure 9, but for 23/01/2006.

Fig. C.5 As for Figure 9, but for 04/04/2007.

Appendix D

Chapter 6 Supplementary Material

D.1 Proof of Proposition 2

Additional notation. If y1⊕y2 ∼ Px1⊕x2π(D), then denote the distribution of y1 |y2

by Px1 |x2π(D). Note that Px1 |x2π(D) depends on y2, because it is the distribution of
y1 |y2, even though the notation does not make this dependence explicit.

The “appropriate regularity conditions”. Let PNλ be the collection of distri-
butions on RN that (a) have a density with respect to the Lebesgue measure and (b)
have a covariance matrix which is strictly positive definite. Let PNλ,G ⊆ PNλ be the
subcollection of distributions which are Gaussian. Then, by Corollary B.1 by Bruinsma
et al. (2021), for all µ ∈ PNλ such that infν∈PN

λ,G
KL(µ, ν) <∞,

arg minν∈PN
λ,G

KL(µ, ν) = N (µ) (D.1)

where N (µ) denotes the Gaussian distribution with mean vector and covariance matrix
equal to those of µ.

In the proposition, by appropriate regularity conditions on y, we mean the as-
sumption that, for all inputs x and D ∈ D, Pxπy(D) is in P |x|λ and such that
inf

ν∈P|x|
λ,G

KL(Pxπy(D), ν) <∞.
Assume the appropriate regularity conditions on y. We now list three technical

observations.

1. Note that Px1 |x2πy(D) is the distribution of y(x1) |D, (x2,y2), so we have the
identity Px1 |x2πy(D) = Px1πy(D ⊕ (x2,y2)). Therefore, for all inputs x1, inputs
x2, and D ∈ D, Px1 |x2πy(D) is in P |x1|

λ and such that infν KL(Px1 |x2πy(D), ν) <
∞.

188 Chapter 6 Supplementary Material

2. The ideal CNP πC matches the means and marginal variances of the true posterior
predictives (Section 6.2). Hence, for all x ∈ X and D ∈ D, PxπC(D) is in P1

λ,G.

3. The ideal GNP πG matches the mean vectors and covariance matrices of the true
posterior predictives (Section 6.2). Hence, for all inputs x and D ∈ D, PxπG(D)
is in P |x|λ,G; which means that, for all x1 ∈ X , inputs x2, and D ∈ D, Px1 |x2πG(D)
is in P1

λ,G.
In the proof, to apply and use equation D.1, we implicitly use these observations.

Proof of Proposition 2. Let x be some inputs and let D ∈ D be some data set. We
will argue that, for all n = 1, . . . , |x|,

KL(Pxn |x1:(n−1)πy(D), PxnπC(D ⊕ (x1:(n−1),y1:(n−1))))
≤ KL(Pxn |x1:(n−1)πy(D), Pxn |x1:(n−1)πG(D)). (D.2)

Assuming this inequality, the result follows directly from the chain rule for the KL
divergence in combination with the definition of ARx (Procedure 6.2.1):

KL(Pxπy(D),ARx(πC, D))
= ∑|x|

n=1 Ey1:(n−1) [KL(Pxn |x1:(n−1)πy(D), PxnπC(D ⊕ (x1:(n−1),y1:(n−1))))] (D.3)
≤ ∑|x|n=1 Ey1:(n−1) [KL(Pxn |x1:(n−1)πy(D), Pxn |x1:(n−1)πG(D))] (D.4)
= KL(Pxπy(D), PxπG(D)) (D.5)

where the expectations are over y1:(n−1) ∼ Px1:(n−1)πy(D). To prove the inequality, note
that, conditional on y1:(n−1), using equation D.1,

arg minν∈P1
λ,G

KL(Pxn |x1:(n−1)πy(D), ν) = N (Pxn |x1:(n−1)πy(D)). (D.6)

By the property of πC that it matches the mean and marginal variance of the true
posterior (Section 6.2),

N (Pxn |x1:(n−1)πy(D)) = N (Pxnπy(D ⊕ (x1:(n−1),y1:(n−1)))) (D.7)
= PxnπC(D ⊕ (x1:(n−1),y1:(n−1))). (D.8)

Therefore,

arg min
ν∈P1

λ,G

KL(Pxn |x1:(n−1)πy(D), ν) = PxnπC(D ⊕ (x1:(n−1),y1:(n−1))). (D.9)

D.2 Proof of Proposition 3 189

Noting that Pxn |x1:(n−1)πG(D) ∈ P1
λ,G, we obtain the desired inequality.

D.2 Proof of Proposition 3

Proof of Proposition 3. Consider the increasing filtration Fn = σ(y1, . . . , yn) with limit
F∞ = σ(⋃∞n=1Fn). Also let Tn = σ(εn+1, εn+2, . . .) and consider the tail σ-algebra
T = ⋂∞

n=1 Tn. Let (xni
)∞i=1 be a subsequence of (xn)∞n=1 such that xni

→ x∗. Let
gn = 1

n

∑n
i=1 yi. Since gn is a function of y1, . . . , yn, it is Fn–measurable and therefore

F∞–measurable. Note that

gn = 1
n

n∑
i=1

f(xni
) + 1

n

n∑
i=1

εi. (D.10)

By sure continuity of f , the first term converges to f(x∗) surely. By the strong law of
large numbers (Example 5.6.1; Durrett, 2010), the second term converges to zero on a
tail event A ∈ T of probability one. We conclude that 1Af(x∗) is σ(F∞, T)–measurable.
Therefore, by almost sure convergence of L2–bounded martingales (Theorem 5.4.5;
Durrett, 2010),

lim
n→∞

E[y(x∗) | y1, . . . , yn] = lim
n→∞

E[f(x∗) | y1, . . . , yn] (E[ε0] = 0) (D.11)

= lim
n→∞

E[f(x∗) | Fn] (definition of Fn) (D.12)

= lim
n→∞

E[f(x∗) | Fn, T] (σ(f(x∗),Fn) ⊥ T) (D.13)

= lim
n→∞

E[1Af(x∗) | Fn, T] (P(A) = 1) (D.14)

= E[1Af(x∗) | F∞, T] (L2–mart. convergence) (D.15)

= 1Af(x∗) (1Af(x∗) ∈ σ(F∞, T)) (D.16)

= f(x∗), (P(A) = 1) (D.17)

where all equalities hold almost surely.

190 Chapter 6 Supplementary Material

D.3 Illustration of the AR procedure

Figure D.1 depicts the AR sampling procedure (Procedure 6.2.1) and procedure to
produce smooth samples (Proposition 3) using the ConvCNP trained on the EQ data
process from Section 6.4.1. Model fit

Step 1: Draw noisy samples using AR sampling (Procedure 6.2.1)

...

Step 2: Denoise sample by passing it through the model (Proposition 3)

Multiple samples

Fig. D.1 Illustration of the AR procedure with a random AR ordering and the de-noising
step (Procedure 6.2.1 and Proposition 3), to produce smooth samples. Given a context set
(black crosses), we can use the CNP to get marginal predictions at arbitrary input locations
(first figure). We choose a randomly sampled input location, draw a corresponding output
sample from the model’s predictive (blue dot in the second plot), append this to the context
set, and pass the augmented context set through the model again. We repeat this step a
number of times (third and fourth figures), until all function (epistemic) uncertainty has been
removed and all that remains is irreducible noise (aleatoric) uncertainty (fifth figure). This
procedure yields noisy function samples (blue dots in the sixth plot), which we pass one last
time through the model to obtained a denoised sample, treating the mean prediction as an
approximate noiseless sample (seventh figure). Repeating this procedure yields high-quality
samples from the model predictive (eighth figure).

D.4 Number and Order of Target Points 191

D.4 Number and Order of Target Points

When deploying a conditional neural process (CNP) autoregressively (AR; Proce-
dure 6.2.1), the number and ordering of the target points matters. In this appendix,
we describe our observations of the effects of the number and ordering of the target
points on the quality of the predictions. In short, our recommendation is to choose
a different random ordering for every sample, and to not let the number/density of
target points exceed that at training time.

D.4.1 Effects of the Number of Target Points

During the AR sampling procedure, the AR CNP is evaluated at context sets of
increasing size. Our experience is that, as long as the sizes of these context sets do
not exceed the sizes seen at training time, the predictions should not be significantly
affected by changes in the number of target points. However, if the AR sampling
procedure evaluates the model at context sets of larger sizes than seen during training
time, then that presents the model with an out-of-distribution situation. What happens
then comes down to how well the neural networks generalise. Our experience is that
the predictions quickly start to break down.

A notable exception of this rule of thumb are convolutional-deep-set–based models,
such as the Convolutional Conditional Neural Process (ConvCNP; Gordon et al., 2020).
For these models, the magnitude of the density channel is what determines whether
the models generalises or not. This means that it is not the total number of points
that matters, but rather the density of the points. Therefore, the AR ConvCNP can
be evaluated at arbitrarily many target points, as long as the density of these points
does not significantly exceed the density of context points seen at training time. Once
the density exceeds the density of the training data, the model is presented with an
out-of-distribution situation, and what happens then again comes down to how well
neural networks generalise.

Figure Section D.4.1 illustrates this observation. When the density target points
does not exceed the training data (50 and 100 points), the predictions look calibrated.
However, once the density of target points comes close or exceed the training data
(200, 500, and 1000 points), bias starts to creep into the predictions.

Although the number/density of points in the AR sampling procedure should not
exceed that at training time, AR CNPs can still produce high-quality samples at
arbitrarily many target points by following the trick outlined at the end of the two-step
procedure below Proposition 3.

192 Chapter 6 Supplementary Material

D.4.2 Effects of the Ordering of Target Points

Our experience is that, as long as the number of target points (or density) does not
exceed that at training time, the ordering of the target point does not really matter.
Section D.4.1 also demonstrates this. When the density of the target points does
not exceed the training data (50 and 100 points), sampling randomly or left to right
does not really matter. However, once the density of the target points comes close
to or exceeds the training data (200, 500, and 1000 points), we observe a difference
in performance between sampling randomly and sampling left to right. Across all
numbers of target points, a random ordering seems to perform most robustly. Our
recommendation is therefore to choose a different random ordering of the target points
for every sample.

D.4.3 Analysis of AR CNPs for CNPs with Gaussian Marginals

In this subsection, we argue that, for CNPs with Gaussian marginals, predictions in
the first few AR steps might be poor, but predictions in later AR steps tend to be more
accurate. Choosing a different random ordering for every sample therefore “averages
out” the effects from these first few AR steps.

When evaluating a CNP with Gaussian marginals in AR mode, every conditional
prediction in the AR process is Gaussian. Let us consider the process of producing
an AR sample. For the first target input x1, we run the CNP forward to obtain a
distribution for the corresponding target output y1. In reality, the true posterior most
likely is non-Gaussian, which means that the prediction for the first target point may
be poor. Nevertheless, we sample this Gaussian, append the sample (x1, y1) to the
context set, and run the CNP forward again. Because we now feed the earlier sample
y1 through the non-linear network, the marginal predictive for the next target output
y2 (having integrated out y1) is non-Gaussian. As we perform more AR steps, the
marginal predictions of later points become increasingly non-Gaussian, increasing the
model’s flexibility.

We see that, for a given ordering of the target inputs, the prediction for the first
target input is likely poor (because it is Gaussian), and (in the best case) the predictions
become more and more accurate as we take more AR steps (because they become
more and more non-Gaussian). This is exactly what is happening in Figure 6.3: the
left prediction is Gaussian and therefore a poor approximation, and, as we go to
the right and take more and more AR steps, the prediction becomes more and more
non-Gaussian and therefore more accurate. If we were to feed the target inputs in right

D.4 Number and Order of Target Points 193

to left, then the same phenomenon would happen. The right prediction would be a
Gaussian and a very poor approximation, and, as we go to the left and take more AR
steps, the prediction would become more non-Gaussian and therefore more accurate.

More generally, for a given ordering of the target points, the ordering will produce
high quality predictions if the conditional distributions of the AR factorisation match
the corresponding conditional distributions of the true posterior. Since the conditionals
of the AR CNP are typically Gaussian by design, this means that the ordering is “good”
if the corresponding conditionals of the true posterior are close to Gaussian.

So when is a conditional of the posterior close to Gaussian? Let us assume that
the true underlying process is a sum of a non-Gaussian process (constituting epistemic
uncertainty) and independent Gaussian noise (constituting aleatoric uncertainty).
Generally, a conditional will have both epistemic and aleatoric uncertainty, so a
Gaussian will be a bad fit. However, as we condition the conditionals of the true
generative process on more and more data, the underlying function will be pinned down
more and more accurately, meaning that the conditional will consist mostly of aleatoric
uncertainty, which is Gaussian. Therefore, as we condition on more and more data, we
expect the conditionals to become more and more Gaussian. This again suggests that
the samples in the first few AR steps might be a poor fit (because the corresponding
conditionals of the true posterior are not yet Gaussian), but that samples in later AR
steps should be a better fit (because the corresponding conditionals are then close to
Gaussian).

To summarise, an ordering of the target points is “good” if the corresponding
conditionals of the true posterior are also close to Gaussian. Under the assumption
that the ground-truth process is a non-Gaussian process with additive Gaussian noise,
conditionals tend to be close to Gaussian if they are conditioned on many data points.
As a consequence, the earlier conditionals in the AR factorisation tend to be poor fits
to the ground-truth posterior, whereas later conditionals tend to produce better fits.
Choosing a different random ordering for every sample therefore “averages out” the
effects from the first few AR steps.

D.4.4 Effect of the random ordering on the spread of the
log-likelihood

We have thus far argued for the benefit of using random ordering in AR, due to the
robustness it provides. However, one issue with random orderings is that, since different
random orderings do not in general give rise to the same predictive distribution, we

194 Chapter 6 Supplementary Material

may obtain different predictive log-likelihoods in practice, depending on the exact
random ordering that we sample. Ideally, we would like not only the mean predictive
log-likelihood (averaged out over orderings) to be high, but also the standard deviation
of the log-likelihood (due to, again, different random orderings) to be small. In other
words, we would like the model to perform well regardless of the random ordering
which we happen to sample.

At this point, note that if the true underlying process is Gaussian, then a sufficiently
well-trained AR CNP with Gaussian marginals would have a small such spread in the
log-likelihood, because all conditional predictions of the model will be close to the
ground truth conditional predictions. Consequently the order with which we make
predictions will have a small effect on the log-likelihood, resulting in a small spread of
predictive log-likelihood values. Consider for example the case where the conditionals
of the CNP exactly match the conditionals of the true process. In this case, there will
be zero variance in the predictive log-likelihood of the process under different orderings.
However, the situation is different when the ground truth is non-Gaussian. In this case,
as we explained in the previous section, the conditionals of the first few target points
may be highly non-Gaussian under the true process, while those of the AR CNP are
Gaussian. In this case, we may get different log-likelihoods depending on the random
order that we happen to sample.

Figure D.3 provides a quantitative illustration of the above point. In this figure,
we show the standard deviation in the per datapoint predictive log-likelihood of an AR
CNP (due to different random orderings) on two variants of a task with sawtooth data.
On the first variant, we always pass an empty context set to the model (blue), and
on the other task, we pass non-emmpty context sets with randomly sampled number
of context points, uniformly distributed between 0 and 100 (red). We observe that
for empty contexts (blue), we get a relatively large standard deviation in predictive
log-likelihood for the first few target points. This likely happens because, initially, the
model may randomly pick a target input where the conditional of the true process is
highly non-Gaussian (making a poor prediction), or it might pick a target input where
the true conditional is Gaussian (making a good prediction). This results in a larger
variance in performance for the first few target points. However, as more target points
are introduced, the standard deviation shrinks. This is because the conditionals of
the true process become increasingly Gaussian, which means that no matter which
target input is picked next, the model will approximate the true conditional accurately
using a Gaussian, thereby reducing the impact of the ordering of subsequent points on
the variance of the log likelihood. Further, introducing a relatively modest number

D.4 Number and Order of Target Points 195

of initial context points (red) in a second variant of the task, substantially reduces
the spread in the predictive log-likelihoods. This is again because conditioning on a
context set means that the conditionals of the true process are better approximated by
Gaussians, reducing the impact that different random orderings have on the spread of
the log-likelihood. In practice, in our experiments, we have found the variance in the
log-likelihood to be near-zero for Gaussian or Gaussian-like ground truth processes,
and larger, but acceptable, for non-Gaussian tasks.

196 Chapter 6 Supplementary Material

D.5 Details for Figure 6.3

The generative process visualised in the top panel of figure 6.3 is defined by the following
mixture distribution:

ptrue(y |x) = a1 · N (f1(x), 1) + a2 · N (f2(x), 1) + a3 · N (f3(x), 1). (D.18)

Given this mixture distribution, the (Gaussian) ideal CNP can be computed in closed
form by computing the first two moments of ptrue:

pCNP(y |x) = N (µ(x), σ(x)2) (D.19)

where

µ(x) =
3∑
i=1

aifi(x) (D.20)

σ(x)2 =
3∑
i=1

ai
(
1 + fi(x)2

)
−
(3∑
i=1

aifi(x)
)2

. (D.21)

The updated mixture weights for the posterior distribution ptrue(y |x,D(c)) given a
context set D(c) can be computed via Bayes rule and pCNP(y |x,D(c)) can be computed
given the updated mixture weights. Note that in figure 6.3 the prior mixture weights
are a1 = a3 = 0.25 and a2 = 0.5, means are given by

f1(x) = x2 + 1, (D.22)
f2(x) = x, (D.23)
f3(x) = −x, (D.24)

and the target locations are x = 1, 2, 4, and 6. The bottom four panels of figure 6.3
show squared exponential kernel density estimates of 30 000 samples drawn from the
generative distribution ptrue(y1, y2, y4, y6), the ideal CNP pCNP(y1, y2, y4, y6), and the
ideal CNP applied in AR mode from left to right

pAR CNP(y1, y2, y4, y6) = pCNP(y1) · pCNP(y2 | y1) · pCNP(y4 | y1, y2) · pCNP(y6 | y1, y2, y4).
(D.25)

D.6 Description of Models 197

D.6 Description of Models

The architectures follow the descriptions from the respective papers they are intro-
duced. Although these descriptions are for one-dimensional inputs and outputs, the
architectures are readily generalised to multidimensional inputs and outputs; we will
explicitly mention wherever that generalisation requires extra care. All architectures
use ReLU activation functions. All GNPs, in addition to a covariance matrix over the
target points, also output heterogeneous observation noise along the marginal means;
the total covariance over the target points is thus the sum of the covariance by the
model and a diagonal matrix formed from these observation noises.

Conditional neural process (CNP; Garnelo et al., 2018a). Set the dimension-
ality of the encoding to K = 256. Parametrise the encoder with a three-hidden-layer
multi-layer perceptron (MLP) of width 256; and parametrise the decoder with a
six-hidden-layer MLP of width 256. For multidimensional outputs, let the decoder
have width 512. For multidimensional outputs where outputs can have context points
at different inputs, produce a separate encoding for every output and concatenate
these into one big encoding. These encoders may or may not share parameters. In
our experiments, for two-dimensional outputs, parametrise separate encoders; for
higher-dimensional outputs, apply the same encoder.

Gaussian neural process (GNP; Markou et al., 2022). Use the same choices
for K, the encoder, and the decoder as the CNP. Set the rank of the kernel map to
R = 64. As mentioned in the introduction, let the decoder produce one extra dimension
which forms heterogeneous observation noise. For multidimensional outputs, the same
caveats as for the CNP apply.

Latent neural process (LNP; Garnelo et al., 2018b). The LNP builds off
the CNP. Call the existing encoder the deterministic encoder. The NP adds one more
encoder called the stochastic encoder. The stochastic encoder mimics the deterministic
encoder, but outputs a K-dimensional vector of means and a K-dimensional vector
of marginal variances. These are used to sample a K-dimensional Gaussian latent
variable (the stochastic encoding). The decoder now additionally takes in the stochastic
encoding. For multidimensional outputs, the same caveats as for the CNP apply.

Attentive conditional neural process (ACNP; Kim et al., 2019). The
ACNP builds off the CNP. It replaces the deterministic encoder encθ : D → RK with
an eight-head attentive encoder enc(att)

θ : D ×X → RK (Vaswani et al., 2017). Unlike
the original deterministic encoder encθ, the new attentive encoder enc(att)

θ also takes
in the target input. Let D(c) = (x(c),y(c)) ∈ D be a context set of size N and let
x(t) ∈ X be a target input. We now descibe the computation of enc(att)

θ (D(c), x(t)).

198 Chapter 6 Supplementary Material

Parametrise ϕx : X → (R32)8 and ϕxy : X × Y → (R32)8 both with three-hidden-layer
MLPs of width 256. Compute

the keys: (kh,n)8
h=1 = ϕx(x(c)

n) for n = 1, . . . , N, (D.26)
the values: (vh,n)8

h=1 = ϕxy(x(c)
n , y

(c)
n) for n = 1, . . . , N, (D.27)

the query: (qh)8
h=1 = ϕx(x(t)). (D.28)

Then compute

v
(q)
h =

N∑
n=1

e⟨qh,kh,n⟩∑N
n′=1 e

⟨qh,kh,n′ ⟩vh,n ∈ R256 (D.29)

Concatenate v(q) = (v(q)
1 , . . . ,v

(q)
8) ∈ R256 and q = (q1, . . . , q8) ∈ R256. Let L : R256 →

R256 be a linear layer; let ϕ(res) : R256 → R256 be a one-hidden-layer MLP of width 256;
and let norm1 and norm2 be two layer normalisation layers with learned pointwise
transformations (Ba et al., 2016). Then

enc(att)
θ (D(c), x(t)) = norm2(z + ϕ(res)(z)) where z = norm1(v(q) +Lq). (D.30)

For multidimensional outputs, the same caveats as for the CNP apply.
Attentive Gaussian neural process (AGNP). The AGNP build off the GNP.

It replaces the deterministic encoder with the same eight-head attentive deterministic
encoder of the ACNP.

Attentive neural process (ALNP; Kim et al., 2019). The ALNP build off
the LNP. It replaces the deterministic encoder with the same eight-head attentive
deterministic encoder of the ACNP.

Convolutional Conditional Neural Process (ConvCNP; Gordon et al.,
2020). Set the discretisation to an evenly spaced grid at a certain density (the points
per unit) spanning a bit more (the margin) than the most extremal context and target
inputs. The points per unit and margin are specified separately for every experiment.
Initialise the length scales of all Gaussian kernels to twice the interpoint spacing of
the discretisation. Divide the data channel by the density channel. Parametrise decθ
with a U-Net (Ronneberger et al., 2015). Before the U-turn, let the U-Net have six
convolutional layers with kernel size five, stride two, and 64 output channels; and six
more such layers, but using transposed convolutions, after the U-turn. The layers
after the U-turn additionally take in the outputs of the layers before the U-turn in
reversed order; this is the U-net structure (Figure 1; Ronneberger et al., 2015). For
multidimensional outputs where outputs can have context points at different inputs,

D.6 Description of Models 199

produce a separate data and density channel for every output and concatenate these
into one big encoding; use separate length scales for every application of encθ.

Convolutional Gaussian neural process (ConvGNP; Markou et al., 2022).
Use the same choices for the discretisation, length scales, and CNN architecture as
for the ConvCNP. Set the rank of the kernel map to R = 64. As mentioned in the
introduction, let the decoder produce one extra channel which forms heterogeneous
observation noise. For multidimensional outputs, the same caveat as for the ConvCNP
applies.

Fully convolutional Gaussian neural process (FullConvGNP; Bruinsma
et al., 2021). For the mean architecture and the kernel architecture, use the same
choices for the discretisation, length scales, and CNN architecture as for the ConvCNP.
Implement the source channel with the identity matrix and apply the matrix transform
Z 7→ ZZT to ensure positive definiteness. Let the decoder produce one extra channel
which forms heterogeneous observation noise. For multidimensional outputs, in addition
to the caveat for the ConvCNP, two additional caveats apply. First, for Do-dimensional
outputs, let the decoder produce D2

o channels rather than just one. These channels
should be interpreted as all covariance and cross-covariance matrices between all
outputs. Second, when applying the matrix transform Z 7→ ZZT, these channels
should first be assembled into one total covariance matrix.

Convolutional latent neural process (ConvLNP; Foong et al., 2020). The
ConvLNP builds off the ConvCNP. The ConvLNP replaces the CNN architecture by
two copies of this architecture placed in sequence. In between the two architectures,
there is a sampling step: the first architecture outputs 32 channels, comprising 16
means and 16 marginal variances, which are used to sample a 16-dimensional Gaussian
latent variable; and the second architecture then takes in this sample.

Autoregressive Conditional Neural Processes (AR CNPs). The AR CNP,
AR ACNP, and AR ConvCNP use the architectures described above. Rolling out an
AR CNP according to Procedure 6.2.1 requires an ordering of the target points. In all
experiments, we choose a random ordering of the target points.

200 Chapter 6 Supplementary Material

D.7 Training, Cross-Validation, and Evaluation Pro-
tocols

The following description applies to the synthetic experiments (Section 6.4.1), the
predator–prey experiments (Section 6.4.2), the EEG experiments (Section 6.4.3), and
the environmental downscaling experiments (Section 6.4.4). For the environmental
data assimilation experiments, a different protocol was used; we refer the reader to
Section D.11 for full details of the environmental data assimilation experiments.

A task consists of a context set and target set. How precisely the context and
target sets are generated is specific to an experiment. To train a model, we consider
batches of 16 tasks at a time, compute an objective function value, and update the
model parameters using ADAM (Kingma and Ba, 2015). The learning rate is specified
separately for every experiment. We define an epoch to consist of 214 ≈ 16 k tasks. We
typically train a model for between 100 and 1000 epochs.

For an experiment, we split up the meta–data set into a training set, a cross-
validation set, and an evaluation set. The model is trained on the training set. During
training, after every epoch, the model is cross-validated on the cross-validation set.
Cross-validation uses 212 fixed tasks. These 212 are fixed, which means that cross-
validation always happens with exactly the same data. The cross-validation objective is
a confidence bound computed from the model objective. Suppose that model objective
over all 212 cross-validation tasks has empirical mean µ̂ and empirical variance σ̂2.
If a higher model objective is better, then the cross-validation objective is given by
µ̂− 1.96 · σ̂/

√
212. The model with the best cross-validation objective is selected and

used for evaluation. Evaluation is performed with the evaluation set and also uses 212

tasks.
Conditional neural processes and Gaussian neural processes are trained, cross-

validated, and evaluated with the neural process ELBO objective proposed by Garnelo
et al. (2018a). We normalise the terms in the neural process objective by the target
set sizes. Latent-variable neural processes (LNPs) are trained, cross-validated, and
evaluated with the ELBO objective proposed by Garnelo et al. (2018b) using five
samples, also normalised by the target set size. When training LNPs with the ELBO
objective, but not when cross-validating and evaluating, the context set is subsumed
in the target set. Additionally, LNPs are trained, cross-validated, and evaluated with
the ML objective proposed by Foong et al. (2020), again normalised by the target set
size. When training and cross-validating LNPs with the ML objective, we use twenty

D.7 Training, Cross-Validation, and Evaluation Protocols 201

samples; and when evaluating, we use 512 samples. For completeness, LNPs trained
with the ELBO objective are also evaluated with the ML objective using 512 samples.

To stabilise the numerics for GNPs, we increase the regularisation of covariance
matrices for one epoch. To encourage LNPs to fit, we fix the variance of the observation
noise of the decoder to 10−4 for the first three epochs.

202 Chapter 6 Supplementary Material

D.8 Details of Synthetic Experiments

D.8.1 Description of Experiments

We synthetically generate data sets by randomly sampling from five different choices
for the ground-truth stochastic process f . Let the inputs be dx-dimensional. Then
define the following stochastic processes:

EQ: a Gaussian process with an exponentiated quadratic (EQ) kernel:

f ∼ GP(0, exp(− 1
2ℓ2∥x− x

′∥2
2)) (D.31)

where ℓ > 0 is a length scale;

Matérn–5
2 : a Gaussian process with a Matérn–5

2 kernel:

f ∼ GP(0, k(1
ℓ
∥x− x′∥2)) (D.32)

where k(r) = (1 +
√

5r + 5
3r

2)e−r and ℓ > 0 is a length scale;

weakly periodic: a Gaussian process with a weakly periodic kernel:

f ∼ GP(0, exp(− 1
2ℓ2d
∥x− x′∥2

2 − 2
ℓ2p
∥sin(π

p
(x− x′))∥2

2)) (D.33)

where ℓd > 0 is a length scale specifying how quickly the periodic
pattern changes, ℓp > 0 a length scale of the periodic pattern, and
p > 0 the period; and where the application of sin is elementwise;

sawtooth: a sawtooth process with a random frequency, direction, and phase:

f = ω⟨x,u⟩2 + ϕ mod 1 (D.34)

where ω ∼ Unif(Ω) is the frequency of the sawtooth wave, u ∼
Unif({x ∈ Rdx : ∥x∥2 = 1}) the direction, and ϕ ∼ Unif([0, 1]) the
phase;

mixture: with equal probability, sample f from the EQ process, Matérn–5
2

process, weakly periodic process, or sawtooth process.

We will call these stochastic processes the data processes. The data processes are
stochastic processes with dx-dimensional inputs and one-dimensional outputs. We

D.8 Details of Synthetic Experiments 203

will turn them into processes with dy-dimensional outputs according to the following
procedure: sample from the one-dimensional-output prior dy times; and, for these dy
samples, take dy different linear combinations.

We choose the parameters of the data processes based on the input dimensionality
dx:

ℓ = c · 1
4 , ℓd = c · 1

2 , ℓs = c, p = c · 1
4 , Ω = [c−1 · 2, c−1 · 4] (D.35)

with c =
√
dx. Scaling with the input dimensionality aims to roughly ensure that data

with one-dimensional inputs and data with two-dimensional inputs are equally difficult.
Figure D.4 illustrates the sawtooth data process in all four configurations.

We will construct data sets by sampling inputs uniformly at random from X =
[−2, 2]dx and then sampling outputs from one of the data processes. We will colloquially
call X the training range. For the EQ, Matérn–5

2 , and weakly periodic process, but
not for the sawtooth process1, we also add independent Gaussian noise with variance
0.05. The numbers of context and target points are as follows. For the EQ, Matérn–5

2 ,
and weakly periodic process, the number of context points is chosen uniformly at
random from {0, . . . , 30 · dx} and the number of targets points is fixed to 50 · dx. For
the sawtooth and mixture process, the number of context points is chosen uniformly
at random from {0, . . . , 30} if dx = 1 and {0, . . . , 75 · dx} otherwise; and the number
of targets points is fixed to 100 · dx. In the case of a multidimensional-output data
process, we separately sample the number and positions of the context and target
inputs for every output dimension.

For every data process and each of the four configurations, we evaluate every model
in three different ways. First, we evaluate the model on data generated exactly like
the training data. This task is called interpolation and abbreviated “int.” in the tables
of results. The interpolation task measures how well a model fits the data and is the
primary measure of performance. Second, we evaluate the model on data with inputs
sampled from [2, 6]dx . This task is called out-of-input-distribution (OOID) interpolation
and abbreviated “OOID” in the tables of results. OOID interpolation measures how
well a model generalises to data sampled from other regions of the input space. Third,
we evaluate the model on data with context inputs sampled from [−2, 2]dx and target
inputs sampled from [2, 6]dx . This task is called extrapolation and abbreviated “ext.”
in the tables of results. The extrapolation task measures how well predictions based
on data in the training range generalise to other regions of the input space.

1The sawtooth process is already challenging enough.

204 Chapter 6 Supplementary Material

For this experiment, the learning rate is 3·10−4, the margin is 0.1, and the points per
unit is 64. We trained the models for 100 epochs. Due to an error in the cross-validation
procedure, we did not use cross-validation, but used the model at epoch 100.

For the kernel architecture of the FullConvGNP, we reduce the points per unit
and the number of channels in the U-Net by a factor two. For the ConvLNP with
two-dimensional inputs, we reduce the number of outputs channels in the U-Net by a
factor

√
2; and, for training and cross-validation, we reduce the number of samples of

the ELBO objective to one and the number of samples for the ML objective to five.

D.8.2 Multi-Modality of Predictions by AR ConvCNP

Figure D.5 demonstrates multi-modality of predictions by the AR ConvCNP trained on
the sawtooth process. Note that the prediction is bimodal for one and two observations,
and collapses to a single mode upon observing the third observation.

D.8.3 Full Results

We the show the full results for all data sets and tasks in Tables D.1 to D.12. The
AR ConvCNP consistently shows very strong performance compared to other NP
models. Note that the FullConvGNP takes much longer to train than the ConvCNP
(Figure 6.2), and cannot be applied to tasks with 2-dimensional input spaces.

D.8 Details of Synthetic Experiments 205

−2

0

2

50 Points Random

−2

0

2

50 Points Left to Right

−2

0

2

100 Points Random

−2

0

2

100 Points Left to Right

−2

0

2

200 Points Random

−2

0

2

200 Points Left to Right

−2

0

2

500 Points Random

−2

0

2

500 Points Left to Right

−2 −1 0 1 2

−2

0

2

1000 Points Random

−2 −1 0 1 2

−2

0

2

1000 Points Left to Right

Fig. D.2 Samples and predictions for an AR ConvCNP with various numbers of target points
ordered randomly (left column) and ordered left to right (right column). When the density of
the target points does not exceed the training data (50 and 100 points), ordering the target
points randomly or left to right does not matter. When the density of the target points
comes close to the training data or exceeds it (200, 500, and 1000 points), bias creeps into the
predictions. The random ordering appears to perform more robustly than left to right. The
data is sampled from the EQ data process from the synthetic experiments (Section 6.4.1),
and the trained model is also taken from the synthetic experiments. The predictions by the
model are shown in solid blue and the marginals by the ground-truth EQ process are shown
in dot-dashed purple.

206 Chapter 6 Supplementary Material

101 102

target points

0.00

0.25

0.50

S
td

.
in

lo
g-

lik
.

p
er

d
at

ap
oi

nt

Standard deviation in log-likelihood per datapoint
(sawtooth data, random ordering)

|x(c)| = 0

|x(c)| ∼ U [10, 100]

Fig. D.3 Plot of the standard deviation, due to different random orderings, of the per datapoint
predictive log-likelihood (in nats) of an AR ConvCNP on one-dimensional sawtooth data,
as a function of the number of target set size. For each point in the plot, we have used 210

randomly sampled and fixed tasks, on each of which we apply the AR ConvCNP with 100
different randomly sampled orderings.

2 1 0 1 2
x

0.0

0.2

0.4

0.6

0.8

1.0

f(
x
)

(a) dx = 1, dy = 1

2 1 0 1 2
x

1.0

0.5

0.0

0.5

f(
x
)

2 1 0 1 2
x

1.25

1.00

0.75

0.50

0.25

(b) dx = 1, dy = 2

2 1 0 1 2
x1

2

1

0

1

2

x
2

0.0

0.2

0.4

0.6

0.8

1.0

f(
x
)

(c) dx = 2, dy = 1

2 1 0 1 2
x1

x
2

2 1 0 1 2
x1

1.5

1.0

0.5

0.0

0.5

f(
x
)

(d) dx = 2, dy = 2

Fig. D.4 Samples from the sawtooth data process with one and two-dimensional inputs
(dx = 1 and dx = 2) and one and two-dimensional outputs (dy = 1 and dy = 2)

D.8 Details of Synthetic Experiments 207

0.0

0.5

1.0

0.0 0.5 1.0

D
en

si
ty

Prediction at x = 0

0.0

0.5

1.0

0.0 0.5 1.0

D
en

si
ty

0.0

0.5

1.0

0.0 0.5 1.0

D
en

si
ty

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

0.0 0.5 1.0

D
en

si
ty

Fig. D.5 Multi-modality of predictions by the AR ConvCNP. Shows four observations sampled
from the sawtooth process. In the four rows, these four observations are revealed one data
point at a time. Every row also shows a kernel density estimate of the prediction at x = 0.
Filled regions are central 95%-credible regions.

208 Chapter 6 Supplementary Material

Model Int. (1D) OOID (1D) Ext. (1D) Int. (2D) OOID (2D) Ext. (2D)

FullConvGNP 0.01±0.00 0.01±0.00 0.00±0.00
ConvCNP (AR) 0.03±0.00 0.03±0.00 0.02±0.00 0.03±0.00 0.03±0.00 0.02±0.00
ConvGNP 0.04±0.00 0.04±0.00 1.75±0.12 0.12±0.00 0.12±0.00 0.71±0.03
AGNP 0.10±0.00 4.34±0.17 5.45±0.23 0.17±0.00 0.62±0.01 0.39±0.01
ConvLNP (E) 0.19±0.01 0.19±0.01 0.29±0.03 0.39±0.01 0.39±0.01 0.36±0.01
ACNP (AR) 0.24±0.01 1.08±0.02 0.86±0.01 0.13±0.00 0.57±0.01 0.40±0.01
GNP 0.25±0.01 F F 0.25±0.01 0.75±0.01 0.57±0.00
ConvLNP (M) 0.31±0.01 0.31±0.01 0.64±0.01 0.28±0.01 0.28±0.01 0.36±0.01
Diagonal GP 0.42±0.02 0.42±0.02 0.84±0.01 0.29±0.01 0.29±0.01 0.40±0.01
ALNP (M) 0.43±0.01 1.03±0.02 0.78±0.01 0.31±0.01 0.55±0.01 0.39±0.01
ConvCNP 0.43±0.02 0.43±0.02 0.84±0.01 0.30±0.01 0.30±0.01 0.40±0.01
CNP (AR) 0.46±0.01 F F 0.36±0.01 F F
LNP (E) 0.51±0.01 F 4.34±0.76 0.40±0.01 3.03±1.68 0.60±0.01
LNP (E–M) 0.52±0.02 F 2.39±0.33 0.39±0.01 2.35±1.06 0.57±0.01
ALNP (E–M) 0.53±0.01 1.12±0.03 0.85±0.02 0.42±0.01 0.78±1.72 0.41±0.01
ACNP 0.54±0.02 1.11±0.02 0.84±0.01 0.34±0.01 0.57±0.01 0.40±0.01
ALNP (E) 0.54±0.01 1.60±0.06 1.25±0.03 0.43±0.01 1.06±3.04 0.42±0.01
LNP (M) 0.59±0.01 F 1.13±0.01 0.41±0.01 0.88±0.03 0.52±0.01
CNP 0.63±0.01 F 1.08±0.02 0.43±0.01 1.16±0.45 0.52±0.01
Trivial 1.08±0.01 1.08±0.01 0.85±0.01 0.57±0.01 0.57±0.01 0.40±0.00
ConvLNP (E–M) 2.01±0.11 2.01±0.11 5.95±0.16 0.44±0.01 0.44±0.01 0.47±0.01

Table D.1 For the Gaussian experiments, average Kullback–Leibler divergences of the posterior
prediction map πy with respect to the model normalised by the number of target points.
Shows for one-dimensional inputs (1D; dx = 1) and two-dimensional inputs (2D; dy = 2)
the performance for interpolation within the range [−2, 2]dx where the models were trained
(“Int.”); interpolation within the range [2, 6]dx which the models have never seen before
(“OOID”); and extrapolation from the range [−2, 2]dx to the range [2, 6]dx (“Ext.”). Models
are ordered by interpolation performance for one-dimensional inputs. The latent variable
models are trained and evaluated with the ELBO objective (E); trained and evaluated with
the ML objective (M); and trained with the ELBO objective and evaluated with the ML
objective (E–M). Diagonal GP refers to predictions by the ground-truth Gaussian processes
without correlations. Trivial refers to predicting the empirical means and standard deviation
of the test data. Errors indicate the central 95%-confidence interval. Numbers which are
significantly best (p < 0.05) are boldfaced. Numbers which are very large are marked as
failed with “F”. Numbers which are missing could not be run.

D.8 Details of Synthetic Experiments 209

Model Int. (1D) OOID (1D) Ext. (1D) Int. (2D) OOID (2D) Ext. (2D)

ConvCNP (AR) 1.52±0.04 1.53±0.04 1.32±0.04 0.56±0.03 0.56±0.03 0.29±0.03
ConvLNP (E) 1.40±0.05 1.40±0.05 0.82±0.05 0.06±0.03 0.06±0.03 −0.62±0.04
ConvLNP (M) 1.08±0.06 1.08±0.06 −0.36±0.03 0.26±0.04 0.26±0.04 −0.70±0.02
ConvGNP 0.79±0.06 0.79±0.06 −1.03±0.07 0.23±0.04 0.23±0.04 −0.79±0.02
FullConvGNP 0.71±0.08 0.72±0.06 −0.20±0.02
ConvCNP 0.57±0.07 0.57±0.07 −0.73±0.02 0.18±0.05 0.18±0.05 −0.86±0.03
ACNP (AR) 0.07±0.03 −0.85±0.03 −0.84±0.02 −0.53±0.02 −1.52±0.10 −1.51±0.09
AGNP −0.31±0.03 −1.22±0.07 −1.58±0.11 −0.55±0.02 −0.79±0.02 −0.76±0.03
ALNP (E–M) −0.33±0.03 −0.91±0.03 −0.80±0.04 −0.67±0.03 −1.06±0.62 −0.70±0.03
ALNP (E) −0.35±0.03 −5.00±0.17 −3.37±0.06 −0.68±0.03 −2.59±7.64 −0.75±0.03
ALNP (M) −0.36±0.02 −0.68±0.02 −0.68±0.02 −0.53±0.02 −0.74±0.04 −0.69±0.02
GNP −0.38±0.02 F F −0.69±0.02 −0.74±0.04 −0.70±0.03
LNP (E–M) −0.43±0.02 F −3.34±0.53 −0.66±0.02 F −0.96±0.03
LNP (E) −0.44±0.02 F F −0.66±0.02 F F
ACNP −0.50±0.03 −0.83±0.03 −0.85±0.03 −0.60±0.02 −1.50±0.10 −0.73±0.03
LNP (M) −0.53±0.02 −1.28±0.05 −0.80±0.03 −0.62±0.02 −1.50±0.11 −0.75±0.03
CNP (AR) −0.65±0.02 −1.14±0.19 −0.98±0.06 −0.69±0.02 −1.05±0.07 −0.72±0.03
CNP −0.68±0.02 −0.79±0.04 −0.73±0.03 −0.69±0.02 −1.05±0.08 −0.71±0.03
Trivial −0.82±0.00 −0.82±0.00 −0.82±0.00 −0.82±0.00 −0.82±0.00 −0.82±0.00
ConvLNP (E–M) F F F −0.04±0.05 −0.04±0.05 −1.47±0.87

Table D.2 For the non-Gaussian experiments, average log-likelihoods normalised by the number
of target points. Shows for one-dimensional inputs (1D; dx = 1) and two-dimensional inputs
(2D; dy = 2) the performance for interpolation within the range [−2, 2]dx where the models
were trained (“Int.”); interpolation within the range [2, 6]dx which the models have never seen
before (“OOID”); and extrapolation from the range [−2, 2]dx to the range [2, 6]dx (“Ext.”).
Models are ordered by interpolation performance for one-dimensional inputs. The latent
variable models are trained and evaluated with the ELBO objective (E); trained and evaluated
with the ML objective (M); and trained with the ELBO objective and evaluated with the ML
objective (E–M). Trivial refers to predicting the empirical means and standard deviation
of the test data. Errors indicate the central 95%-confidence interval. Numbers which are
significantly best (p < 0.05) are boldfaced. Numbers which are very large are marked as
failed with “F”. Numbers which are missing could not be run.

210 Chapter 6 Supplementary Material

EQ Int. OOID Ext.
dx =1, dy =1

FullConvGNP 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00
ConvGNP 0.01 ±0.00 0.01 ±0.00 3.46 ±0.08
ConvCNP (AR) 0.01 ±0.00 0.01 ±0.00 0.01 ±0.00
AGNP 0.03 ±0.00 4.28 ±0.08 7.38 ±0.13
ConvLNP (E) 0.06 ±0.00 0.06 ±0.00 0.11 ±0.01
ACNP (AR) 0.07 ±0.00 1.19 ±0.01 0.98 ±0.01
GNP 0.08 ±0.00 F F
ConvLNP (M) 0.25 ±0.01 0.25 ±0.01 0.67 ±0.01
CNP (AR) 0.28 ±0.00 F F
ALNP (M) 0.31 ±0.01 1.04 ±0.01 0.84 ±0.01
LNP (E) 0.34 ±0.01 F 1.34 ±0.01
LNP (E–M) 0.37 ±0.01 F 1.27 ±0.01
Diagonal GP 0.40 ±0.01 0.40 ±0.01 0.95 ±0.01
ConvCNP 0.41 ±0.01 0.41 ±0.01 0.95 ±0.01
ANP (E–M) 0.42 ±0.01 1.18 ±0.01 0.94 ±0.01
ANP (E) 0.44 ±0.01 1.32 ±0.01 1.25 ±0.01
ACNP 0.45 ±0.01 1.22 ±0.01 0.95 ±0.01
LNP (M) 0.49 ±0.01 1.54 ±0.01 1.45 ±0.01
CNP 0.54 ±0.01 F 1.41 ±0.01
ConvLNP (E–M) 0.90 ±0.04 0.90 ±0.04 4.05 ±0.06
Trivial 1.19 ±0.00 1.19 ±0.00 0.96 ±0.00

EQ Int. OOID Ext.
dx =1, dy =2

FullConvGNP 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00
ConvGNP 0.01 ±0.00 0.01 ±0.00 1.73 ±0.05
ConvCNP (AR) 0.01 ±0.00 0.01 ±0.00 0.01 ±0.00
AGNP 0.04 ±0.00 7.71 ±0.10 7.87 ±0.10
ACNP (AR) 0.07 ±0.00 1.31 ±0.01 1.09 ±0.01
ConvLNP (E) 0.08 ±0.00 0.08 ±0.00 0.13 ±0.00
GNP 0.13 ±0.00 F F
ConvLNP (M) 0.36 ±0.01 0.36 ±0.01 0.88 ±0.00
ALNP (M) 0.41 ±0.01 1.23 ±0.01 0.99 ±0.00
CNP (AR) 0.42 ±0.00 F F
Diagonal GP 0.47 ±0.01 0.47 ±0.01 1.06 ±0.00
ConvCNP 0.48 ±0.01 0.48 ±0.01 1.06 ±0.00
ACNP 0.51 ±0.01 1.38 ±0.01 1.06 ±0.01
ALNP (E–M) 0.52 ±0.01 1.47 ±0.02 1.07 ±0.01
ALNP (E) 0.53 ±0.01 3.79 ±0.05 2.84 ±0.02
LNP (E) 0.54 ±0.01 F 1.47 ±0.01
LNP (E–M) 0.56 ±0.01 F 1.42 ±0.01
LNP (M) 0.64 ±0.00 F 1.52 ±0.00
CNP 0.66 ±0.01 F 1.28 ±0.00
Trivial 1.31 ±0.00 1.31 ±0.00 1.07 ±0.00
ConvLNP (E–M) 2.14 ±0.06 2.14 ±0.06 9.30 ±0.08

Table D.3 For the EQ synthetic experiments with one-dimensional inputs, average Kullback–
Leibler divergences of the posterior prediction map πy with respect to the model normalised
by the number of target points. Shows for one-dimensional outputs (dy = 1) and two-
dimensional outputs (dy = 2) the performance for interpolation within the range [−2, 2] where
the models where trained (“Int.”); interpolation within the range [2, 6] which the models
have never seen before (“OOID”); and extrapolation from the range [−2, 2] to the range [2, 6]
(“Ext.”). Models are ordered by interpolation performance. The latent variable models are
trained and evaluated with the ELBO objective (E); trained and evaluated with the ML
objective (M); and trained with the ELBO objective and evaluated with the ML objective
(E–M). Diagonal GP refers to predictions by the ground-truth Gaussian processes without
correlations. Trivial refers to predicting the empirical means and standard deviation of
the test data. Errors indicate the central 95%-confidence interval. Numbers which are
significantly best (p < 0.05) are boldfaced. Numbers which are very large are marked as
failed with “F”. Numbers which are missing could not be run.

D.8 Details of Synthetic Experiments 211

EQ Int. OOID Ext.
dx =2, dy =1

ConvCNP (AR) 0.01 ±0.00 0.01 ±0.00 0.01 ±0.00
ConvGNP 0.08 ±0.00 0.08 ±0.00 1.92 ±0.02
AGNP 0.09 ±0.00 0.70 ±0.00 0.50 ±0.00
ACNP (AR) 0.09 ±0.00 0.72 ±0.00 0.51 ±0.00
GNP 0.19 ±0.00 1.01 ±0.00 0.80 ±0.00
ConvLNP (M) 0.34 ±0.00 0.34 ±0.00 0.47 ±0.00
ALNP (M) 0.34 ±0.00 0.70 ±0.00 0.51 ±0.00
Diagonal GP 0.36 ±0.00 0.36 ±0.00 0.51 ±0.00
ConvCNP 0.37 ±0.00 0.37 ±0.00 0.51 ±0.00
ACNP 0.40 ±0.00 0.72 ±0.00 0.51 ±0.00
ConvLNP (E) 0.41 ±0.00 0.41 ±0.00 0.46 ±0.00
CNP (AR) 0.41 ±0.00 0.90 ±0.00 0.71 ±0.00
LNP (E–M) 0.46 ±0.00 0.99 ±0.01 0.65 ±0.00
LNP (E) 0.48 ±0.00 1.04 ±0.01 0.67 ±0.00
ConvLNP (E–M) 0.48 ±0.00 0.48 ±0.00 0.59 ±0.01
ALNP (E–M) 0.49 ±0.01 0.72 ±0.00 0.51 ±0.00
ALNP (E) 0.50 ±0.01 0.73 ±0.00 0.52 ±0.00
LNP (M) 0.51 ±0.00 0.92 ±0.00 0.72 ±0.00
CNP 0.52 ±0.00 0.92 ±0.00 0.72 ±0.00
Trivial 0.72 ±0.00 0.72 ±0.00 0.51 ±0.00
FullConvGNP

EQ Int. OOID Ext.
dx =2, dy =2

ConvCNP (AR) 0.03 ±0.00 0.03 ±0.00 0.02 ±0.00
ACNP (AR) 0.11 ±0.00 0.79 ±0.00 0.56 ±0.00
ConvGNP 0.19 ±0.00 0.19 ±0.00 0.74 ±0.01
AGNP 0.22 ±0.00 0.87 ±0.01 0.57 ±0.00
GNP 0.38 ±0.00 1.06 ±0.00 0.75 ±0.00
ConvNP (M) 0.39 ±0.00 0.39 ±0.00 0.52 ±0.00
Diagonal GP 0.40 ±0.00 0.40 ±0.00 0.56 ±0.00
ConvCNP 0.41 ±0.00 0.41 ±0.00 0.56 ±0.00
ANP (M) 0.42 ±0.00 0.79 ±0.00 0.54 ±0.00
ACNP 0.44 ±0.00 0.79 ±0.00 0.56 ±0.00
CNP (AR) 0.52 ±0.00 F F
NP (E–M) 0.56 ±0.00 1.95 ±0.03 0.72 ±0.00
ANP (E–M) 0.56 ±0.00 1.90 ±1.72 0.55 ±0.00
NP (E) 0.57 ±0.00 1.99 ±0.03 0.72 ±0.00
ANP (E) 0.57 ±0.00 3.51 ±3.04 0.56 ±0.00
NP (M) 0.59 ±0.00 1.17 ±0.01 0.75 ±0.00
CNP 0.60 ±0.00 3.08 ±0.42 0.66 ±0.00
Trivial 0.79 ±0.00 0.79 ±0.00 0.56 ±0.00
ConvNP (E–M) 0.79 ±0.00 0.79 ±0.00 0.56 ±0.00
ConvNP (E) 0.79 ±0.00 0.79 ±0.00 0.56 ±0.00
FullConvGNP

Table D.4 For the EQ synthetic experiments with two-dimensional inputs, average Kullback–
Leibler divergences of the posterior prediction map πy with respect to the model normalised
by the number of target points. Shows for one-dimensional outputs (dy = 1) and two-
dimensional outputs (dy = 2) the performance for interpolation within the range [−2, 2]2
where the models where trained (“Int.”); interpolation within the range [2, 6]2 which the
models have never seen before (“OOID”); and extrapolation from the range [−2, 2]2 to the
range [2, 6]2 (“Ext.”). Models are ordered by interpolation performance. The latent variable
models are trained and evaluated with the ELBO objective (E); trained and evaluated with
the ML objective (M); and trained with the ELBO objective and evaluated with the ML
objective (E–M). Diagonal GP refers to predictions by the ground-truth Gaussian processes
without correlations. Trivial refers to predicting the empirical means and standard deviation
of the test data. Errors indicate the central 95%-confidence interval. Numbers which are
significantly best (p < 0.05) are boldfaced. Numbers which are very large are marked as
failed with “F”. Numbers which are missing could not be run.

212 Chapter 6 Supplementary Material

Matérn– 5
2 Int. OOID Ext.

dx =1, dy =1

FullConvGNP 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00
ConvCNP (AR) 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00
ConvGNP 0.01 ±0.00 0.01 ±0.00 2.32 ±0.06
AGNP 0.03 ±0.00 4.53 ±0.08 7.22 ±0.12
ACNP (AR) 0.04 ±0.00 1.08 ±0.01 0.87 ±0.01
GNP 0.09 ±0.00 F F
ConvLNP (E) 0.13 ±0.00 0.13 ±0.00 0.31 ±0.02
ConvLNP (M) 0.26 ±0.01 0.26 ±0.01 0.58 ±0.00
ALNP (M) 0.30 ±0.00 0.98 ±0.01 0.78 ±0.01
CNP (AR) 0.34 ±0.01 1.81 ±0.04 1.32 ±0.02
LNP (E) 0.36 ±0.00 F 1.31 ±0.01
LNP (E–M) 0.37 ±0.01 F 1.14 ±0.00
Diagonal GP 0.40 ±0.01 0.40 ±0.01 0.84 ±0.01
ConvCNP 0.40 ±0.01 0.40 ±0.01 0.84 ±0.01
ALNP (E–M) 0.41 ±0.01 1.13 ±0.01 0.84 ±0.01
ACNP 0.42 ±0.01 1.10 ±0.01 0.84 ±0.01
ALNP (E) 0.43 ±0.01 1.15 ±0.01 0.87 ±0.01
LNP (M) 0.51 ±0.00 1.87 ±0.02 1.30 ±0.01
CNP 0.54 ±0.01 1.47 ±0.02 1.11 ±0.01
Trivial 1.08 ±0.00 1.08 ±0.00 0.85 ±0.00
ConvLNP (E–M) 1.37 ±0.04 1.36 ±0.04 4.30 ±0.06

Matérn– 5
2 Int. OOID Ext.

dx =1, dy =2

FullConvGNP 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00
ConvCNP (AR) 0.01 ±0.00 0.01 ±0.00 0.01 ±0.00
ConvGNP 0.02 ±0.00 0.02 ±0.00 1.71 ±0.04
AGNP 0.04 ±0.00 6.14 ±0.08 7.03 ±0.09
ACNP (AR) 0.05 ±0.00 1.18 ±0.01 0.96 ±0.01
GNP 0.13 ±0.00 F F
ConvLNP (E) 0.16 ±0.00 0.16 ±0.00 0.29 ±0.00
ConvLNP (M) 0.36 ±0.00 0.36 ±0.00 0.76 ±0.00
ALNP (M) 0.40 ±0.00 1.10 ±0.01 0.88 ±0.00
CNP (AR) 0.45 ±0.00 F F
Diagonal GP 0.46 ±0.01 0.46 ±0.01 0.93 ±0.00
ConvCNP 0.46 ±0.01 0.46 ±0.01 0.93 ±0.00
ACNP 0.49 ±0.01 1.23 ±0.01 0.93 ±0.00
ALNP (E–M) 0.51 ±0.01 1.28 ±0.01 0.99 ±0.01
ALNP (E) 0.51 ±0.01 1.43 ±0.02 1.10 ±0.01
LNP (E–M) 0.54 ±0.00 F 1.24 ±0.00
LNP (E) 0.54 ±0.00 F 1.79 ±0.01
LNP (M) 0.63 ±0.00 2.33 ±0.02 1.23 ±0.00
CNP 0.65 ±0.00 7.72 ±0.69 1.23 ±0.00
Trivial 1.18 ±0.00 1.18 ±0.00 0.94 ±0.00
ConvLNP (E–M) 3.07 ±0.06 3.06 ±0.06 9.83 ±0.09

Table D.5 For the Matérn–5
2 synthetic experiments with one-dimensional inputs, average

Kullback–Leibler divergences of the posterior prediction map πy with respect to the model
normalised by the number of target points. Shows for one-dimensional outputs (dy = 1)
and two-dimensional outputs (dy = 2) the performance for interpolation within the range
[−2, 2] where the models where trained (“Int.”); interpolation within the range [2, 6] which
the models have never seen before (“OOID”); and extrapolation from the range [−2, 2] to the
range [2, 6] (“Ext.”). Models are ordered by interpolation performance. The latent variable
models are trained and evaluated with the ELBO objective (E); trained and evaluated with
the ML objective (M); and trained with the ELBO objective and evaluated with the ML
objective (E–M). Diagonal GP refers to predictions by the ground-truth Gaussian processes
without correlations. Trivial refers to predicting the empirical means and standard deviation
of the test data. Errors indicate the central 95%-confidence interval. Numbers which are
significantly best (p < 0.05) are boldfaced. Numbers which are very large are marked as
failed with “F”. Numbers which are missing could not be run.

D.8 Details of Synthetic Experiments 213

Matérn– 5
2 Int. OOID Ext.

dx =2, dy =1

ConvCNP (AR) 0.01 ±0.00 0.01 ±0.00 0.00 ±0.00
ACNP (AR) 0.05 ±0.00 0.54 ±0.00 0.38 ±0.00
AGNP 0.08 ±0.00 0.83 ±0.01 0.37 ±0.00
ConvGNP 0.08 ±0.00 0.08 ±0.00 0.60 ±0.01
GNP 0.16 ±0.00 0.90 ±0.00 0.75 ±0.00
ConvLNP (M) 0.25 ±0.00 0.25 ±0.00 0.34 ±0.00
ALNP (M) 0.26 ±0.00 0.51 ±0.00 0.37 ±0.00
Diagonal GP 0.28 ±0.00 0.28 ±0.00 0.39 ±0.00
ConvCNP 0.28 ±0.00 0.28 ±0.00 0.39 ±0.00
ACNP 0.29 ±0.00 0.54 ±0.00 0.39 ±0.00
CNP (AR) 0.31 ±0.00 0.69 ±0.00 0.52 ±0.00
ConvLNP (E) 0.32 ±0.00 0.32 ±0.00 0.30 ±0.00
LNP (E–M) 0.34 ±0.00 1.07 ±0.01 0.69 ±0.00
LNP (E) 0.35 ±0.00 1.25 ±0.01 0.72 ±0.00
ConvLNP (E–M) 0.36 ±0.00 0.36 ±0.00 0.43 ±0.00
LNP (M) 0.37 ±0.00 0.75 ±0.01 0.51 ±0.00
ALNP (E–M) 0.39 ±0.00 0.65 ±0.01 0.43 ±0.00
CNP 0.39 ±0.00 0.67 ±0.00 0.54 ±0.00
ALNP (E) 0.41 ±0.01 0.67 ±0.01 0.44 ±0.00
Trivial 0.55 ±0.00 0.55 ±0.00 0.39 ±0.00
FullConvGNP

Matérn– 5
2 Int. OOID Ext.

dx =2, dy =2

ConvCNP (AR) 0.01 ±0.00 0.01 ±0.00 0.01 ±0.00
ACNP (AR) 0.06 ±0.00 0.58 ±0.00 0.41 ±0.00
ConvGNP 0.14 ±0.00 0.14 ±0.00 0.64 ±0.01
AGNP 0.17 ±0.00 0.58 ±0.00 0.40 ±0.00
GNP 0.28 ±0.00 0.78 ±0.00 0.60 ±0.00
ConvLNP (M) 0.29 ±0.00 0.29 ±0.00 0.38 ±0.00
ALNP (M) 0.29 ±0.00 0.56 ±0.00 0.40 ±0.00
Diagonal GP 0.30 ±0.00 0.30 ±0.00 0.41 ±0.00
ConvCNP 0.30 ±0.00 0.30 ±0.00 0.41 ±0.00
ACNP 0.32 ±0.00 0.58 ±0.00 0.41 ±0.00
ConvLNP (E) 0.36 ±0.00 0.36 ±0.00 0.37 ±0.00
CNP (AR) 0.37 ±0.00 F 0.88 ±0.17
LNP (E–M) 0.41 ±0.00 2.29 ±0.05 0.59 ±0.00
LNP (E) 0.41 ±0.00 2.36 ±0.05 0.60 ±0.00
ALNP (E–M) 0.42 ±0.00 0.61 ±0.00 0.41 ±0.00
ALNP (E) 0.42 ±0.00 0.61 ±0.00 0.41 ±0.00
LNP (M) 0.43 ±0.00 0.68 ±0.00 0.53 ±0.00
CNP 0.44 ±0.00 0.86 ±0.17 0.59 ±0.00
ConvLNP (E–M) 0.49 ±0.00 0.49 ±0.00 0.61 ±0.00
Trivial 0.58 ±0.00 0.58 ±0.00 0.41 ±0.00
FullConvGNP

Table D.6 For the Matérn–5
2 synthetic experiments with two-dimensional inputs, average

Kullback–Leibler divergences of the posterior prediction map πy with respect to the model
normalised by the number of target points. Shows for one-dimensional outputs (dy = 1)
and two-dimensional outputs (dy = 2) the performance for interpolation within the range
[−2, 2]2 where the models where trained (“Int.”); interpolation within the range [2, 6]2 which
the models have never seen before (“OOID”); and extrapolation from the range [−2, 2]2 to
the range [2, 6]2 (“Ext.”). Models are ordered by interpolation performance. Diagonal GP
refers to predictions by the ground-truth Gaussian processes without correlations. Trivial
refers to predicting the empirical means and standard deviation of the test data. Errors
indicate the central 95%-confidence interval. Numbers which are significantly best (p < 0.05)
are boldfaced. Numbers which are very large are marked as failed with “F”. Numbers which
are missing could not be run.

214 Chapter 6 Supplementary Material

Weakly Periodic Int. OOID Ext.
dx =1, dy =1

FullConvGNP 0.02 ±0.00 0.02 ±0.00 0.00 ±0.00
ConvCNP (AR) 0.05 ±0.00 0.05 ±0.00 0.04 ±0.00
ConvGNP 0.05 ±0.00 0.05 ±0.00 0.56 ±0.02
AGNP 0.22 ±0.00 1.25 ±0.02 1.25 ±0.02
ConvLNP (M) 0.28 ±0.00 0.28 ±0.00 0.43 ±0.00
ConvLNP (E) 0.34 ±0.00 0.33 ±0.00 0.45 ±0.02
Diagonal GP 0.38 ±0.01 0.38 ±0.01 0.59 ±0.01
ConvCNP 0.40 ±0.01 0.40 ±0.01 0.60 ±0.01
ALNP (M) 0.53 ±0.00 0.77 ±0.01 0.57 ±0.01
ACNP (AR) 0.57 ±0.01 0.82 ±0.01 0.61 ±0.01
GNP 0.59 ±0.01 1.31 ±0.02 0.62 ±0.01
CNP (AR) 0.59 ±0.01 2.33 ±0.27 1.46 ±0.05
LNP (E–M) 0.60 ±0.01 F 4.09 ±0.28
ALNP (E–M) 0.60 ±0.01 0.78 ±0.01 0.59 ±0.01
LNP (M) 0.60 ±0.01 0.80 ±0.01 0.62 ±0.01
LNP (E) 0.61 ±0.01 F 9.91 ±0.70
ALNP (E) 0.62 ±0.01 1.01 ±0.01 0.71 ±0.01
ACNP 0.65 ±0.01 0.82 ±0.01 0.61 ±0.01
CNP 0.67 ±0.01 1.45 ±0.03 0.68 ±0.01
Trivial 0.82 ±0.00 0.82 ±0.00 0.61 ±0.00
ConvLNP (E–M) 1.58 ±0.03 1.57 ±0.03 2.85 ±0.04

Weakly Periodic Int. OOID Ext.
dx =1, dy =2

FullConvGNP 0.03 ±0.00 0.03 ±0.00 0.00 ±0.00
ConvCNP (AR) 0.09 ±0.00 0.09 ±0.00 0.06 ±0.00
ConvGNP 0.12 ±0.00 0.12 ±0.00 0.72 ±0.01
AGNP 0.25 ±0.00 2.17 ±0.02 1.95 ±0.02
ConvLNP (M) 0.38 ±0.00 0.38 ±0.00 0.54 ±0.00
ConvLNP (E) 0.39 ±0.00 0.39 ±0.00 0.44 ±0.00
Diagonal GP 0.42 ±0.00 0.42 ±0.00 0.65 ±0.00
ConvCNP 0.46 ±0.00 0.46 ±0.00 0.65 ±0.00
GNP 0.50 ±0.00 1.02 ±0.01 0.76 ±0.00
ALNP (M) 0.62 ±0.00 1.04 ±0.01 0.64 ±0.00
ACNP (AR) 0.63 ±0.00 0.89 ±0.01 0.66 ±0.00
CNP (AR) 0.67 ±0.00 2.52 ±0.07 1.21 ±0.01
LNP (E–M) 0.68 ±0.00 F 5.18 ±0.18
LNP (M) 0.69 ±0.00 1.26 ±0.01 0.68 ±0.01
LNP (E) 0.69 ±0.00 F F
ALNP (E–M) 0.70 ±0.00 0.85 ±0.01 0.64 ±0.00
ACNP 0.71 ±0.00 0.89 ±0.01 0.66 ±0.00
ALNP (E) 0.72 ±0.00 0.93 ±0.01 0.72 ±0.00
CNP 0.74 ±0.00 1.27 ±0.01 0.77 ±0.01
Trivial 0.89 ±0.00 0.89 ±0.00 0.67 ±0.00
ConvLNP (E–M) 3.02 ±0.03 3.02 ±0.03 5.40 ±0.04

Table D.7 For the weakly periodic synthetic experiments with one-dimensional inputs, average
Kullback–Leibler divergences of the posterior prediction map πy with respect to the model
normalised by the number of target points. Shows for one-dimensional outputs (dy = 1)
and two-dimensional outputs (dy = 2) the performance for interpolation within the range
[−2, 2] where the models where trained (“Int.”); interpolation within the range [2, 6] which
the models have never seen before (“OOID”); and extrapolation from the range [−2, 2] to the
range [2, 6] (“Ext.”). Models are ordered by interpolation performance. The latent variable
models are trained and evaluated with the ELBO objective (E); trained and evaluated with
the ML objective (M); and trained with the ELBO objective and evaluated with the ML
objective (E–M). Diagonal GP refers to predictions by the ground-truth Gaussian processes
without correlations. Trivial refers to predicting the empirical means and standard deviation
of the test data. Errors indicate the central 95%-confidence interval. Numbers which are
significantly best (p < 0.05) are boldfaced. Numbers which are very large are marked as
failed with “F”. Numbers which are missing could not be run.

D.8 Details of Synthetic Experiments 215

Weakly Periodic Int. OOID Ext.
dx =2, dy =1

ConvCNP (AR) 0.05 ±0.00 0.05 ±0.00 0.03 ±0.00
ConvGNP 0.10 ±0.00 0.10 ±0.00 0.19 ±0.00
ConvLNP (M) 0.18 ±0.00 0.18 ±0.00 0.21 ±0.00
Diagonal GP 0.19 ±0.00 0.19 ±0.00 0.27 ±0.00
ConvCNP 0.20 ±0.00 0.20 ±0.00 0.27 ±0.00
ConvLNP (E) 0.22 ±0.00 0.22 ±0.00 0.22 ±0.00
AGNP 0.23 ±0.00 0.35 ±0.00 0.26 ±0.00
ACNP (AR) 0.23 ±0.00 0.37 ±0.00 0.26 ±0.00
ConvLNP (E–M) 0.23 ±0.00 0.23 ±0.00 0.29 ±0.00
GNP 0.23 ±0.00 0.35 ±0.00 0.24 ±0.00
CNP (AR) 0.25 ±0.00 0.82 ±0.01 0.72 ±0.01
ALNP (M) 0.25 ±0.00 0.36 ±0.00 0.25 ±0.00
LNP (M) 0.26 ±0.00 1.32 ±0.03 0.33 ±0.00
LNP (E–M) 0.26 ±0.00 6.28 ±1.06 0.44 ±0.01
LNP (E) 0.27 ±0.00 9.91 ±1.68 0.52 ±0.01
ACNP 0.28 ±0.00 0.37 ±0.00 0.27 ±0.00
CNP 0.29 ±0.00 0.81 ±0.01 0.29 ±0.00
ALNP (E–M) 0.31 ±0.00 0.39 ±0.00 0.26 ±0.00
ALNP (E) 0.32 ±0.00 0.42 ±0.00 0.29 ±0.00
Trivial 0.38 ±0.00 0.38 ±0.00 0.27 ±0.00
FullConvGNP

Weakly Periodic Int. OOID Ext.
dx =2, dy =2

ConvCNP (AR) 0.08 ±0.00 0.08 ±0.00 0.05 ±0.00
ConvGNP 0.13 ±0.00 0.13 ±0.00 0.18 ±0.00
Diagonal GP 0.20 ±0.00 0.20 ±0.00 0.28 ±0.00
ConvLNP (M) 0.21 ±0.00 0.21 ±0.00 0.25 ±0.00
ConvCNP 0.23 ±0.00 0.23 ±0.00 0.28 ±0.00
AGNP 0.24 ±0.00 0.39 ±0.00 0.27 ±0.00
ACNP (AR) 0.25 ±0.00 0.40 ±0.00 0.28 ±0.00
GNP 0.25 ±0.00 0.38 ±0.00 0.25 ±0.00
ConvLNP (E) 0.26 ±0.00 0.26 ±0.00 0.27 ±0.00
CNP (AR) 0.27 ±0.00 3.21 ±0.14 0.77 ±0.02
ALNP (M) 0.28 ±0.00 0.39 ±0.00 0.28 ±0.00
LNP (M) 0.29 ±0.00 0.42 ±0.00 0.31 ±0.00
LNP (E–M) 0.29 ±0.00 1.52 ±0.04 0.36 ±0.00
LNP (E) 0.30 ±0.00 1.60 ±0.05 0.39 ±0.00
ConvLNP (E–M) 0.30 ±0.00 0.30 ±0.00 0.34 ±0.00
ACNP 0.30 ±0.00 0.40 ±0.00 0.29 ±0.00
CNP 0.31 ±0.00 0.63 ±0.01 0.33 ±0.00
ALNP (E–M) 0.36 ±0.00 0.43 ±0.00 0.28 ±0.00
ALNP (E) 0.36 ±0.00 0.44 ±0.00 0.29 ±0.00
Trivial 0.40 ±0.00 0.40 ±0.00 0.28 ±0.00
FullConvGNP

Table D.8 For the weakly periodic synthetic experiments with two-dimensional inputs, average
Kullback–Leibler divergences of the posterior prediction map πy with respect to the model
normalised by the number of target points. Shows for one-dimensional outputs (dy = 1) and
two-dimensional outputs (dy = 2) the performance for interpolation within the range [−2, 2]2
where the models where trained (“Int.”); interpolation within the range [2, 6]2 which the
models have never seen before (“OOID”); and extrapolation from the range [−2, 2]2 to the
range [2, 6]2 (“Ext.”). Models are ordered by interpolation performance. The latent variable
models are trained and evaluated with the ELBO objective (E); trained and evaluated with
the ML objective (M); and trained with the ELBO objective and evaluated with the ML
objective (E–M). Diagonal GP refers to predictions by the ground-truth Gaussian processes
without correlations. Trivial refers to predicting the empirical means and standard deviation
of the test data. Errors indicate the central 95%-confidence interval. Numbers which are
significantly best (p < 0.05) are boldfaced. Numbers which are very large are marked as
failed with “F”. Numbers which are missing could not be run.

216 Chapter 6 Supplementary Material

Sawtooth Int. OOID Ext.
dx =1, dy =1

ConvCNP (AR) 3.60±0.01 3.60±0.01 3.34±0.01
ConvLNP (E) 3.51±0.02 3.52±0.02 2.68±0.02
ConvLNP 3.06±0.04 3.06±0.04 0.64±0.01
ConvGNP 2.62±0.05 2.61±0.08 −0.04±0.01
ConvCNP 2.38±0.04 2.37±0.04 −0.00±0.01
FullConvGNP 2.16±0.04 2.15±0.04 0.18±0.01
ALNP (E–M) 0.27±0.01 −0.18±0.00 −0.31±0.02
ALNP (E) 0.27±0.01 −15.96±0.17 −9.14±0.04
ALNP 0.20±0.00 −0.18±0.00 −0.18±0.00
LNP (E–M) 0.07±0.01 F −8.67±0.53
LNP (E) 0.06±0.01 F F
Trivial −0.18±0.00 −0.18±0.00 −0.18±0.00
LNP −0.18±0.00 −0.18±0.00 −0.18±0.00
CNP (AR) −0.18±0.00 −0.18±0.00 −0.18±0.00
CNP −0.18±0.00 −0.18±0.00 −0.18±0.00
GNP −0.18±0.00 −0.18±0.00 −0.18±0.00
AGNP −0.18±0.00 −0.18±0.00 −0.18±0.00
ACNP −0.18±0.00 −0.18±0.00 −0.18±0.00
ACNP (AR) −0.18±0.00 −0.18±0.00 −0.18±0.00
ConvLNP (E–M) F F F

Sawtooth Int. OOID Ext.
dx =1, dy =2

ConvCNP (AR) 2.22±0.01 2.22±0.01 1.91±0.01
ConvLNP (E) 2.01±0.01 2.01±0.01 1.47±0.01
ConvLNP 1.73±0.03 1.73±0.03 −0.12±0.01
ACNP (AR) 1.01±0.01 −0.47±0.01 −0.45±0.01
FullConvGNP 0.99±0.06 1.04±0.03 0.11±0.00
ConvCNP 0.83±0.03 0.84±0.02 −0.29±0.00
ConvGNP 0.82±0.03 0.82±0.03 −0.29±0.00
GNP −0.03±0.00 F F
ALNP (E–M) −0.06±0.01 −0.75±0.01 −0.35±0.00
ALNP (E) −0.07±0.01 −0.78±0.02 −0.35±0.00
AGNP −0.07±0.01 −0.37±0.00 −0.48±0.07
ACNP −0.08±0.01 −0.41±0.01 −0.42±0.01
LNP (E–M) −0.20±0.00 F −1.33±0.00
LNP (E) −0.20±0.00 F −1.33±0.00
ALNP −0.28±0.00 −0.33±0.00 −0.33±0.00
CNP (AR) −0.29±0.00 −1.96±0.19 −1.43±0.06
CNP −0.30±0.00 −0.51±0.01 −0.34±0.00
LNP −0.32±0.00 −0.32±0.00 −0.32±0.00
Trivial −0.33±0.00 −0.33±0.00 −0.33±0.00
ConvLNP (E–M) −2.98±0.10 −2.98±0.10 −6.74±0.04

Table D.9 For the sawtooth synthetic experiments with one-dimensional inputs, average
log-likelihoods normalised by the number of target points. Shows for one-dimensional
outputs (dy = 1) and two-dimensional outputs (dy = 2) the performance for interpolation
within the range [−2, 2] where the models where trained (“Int.”); interpolation within the
range [2, 6] which the models have never seen before (“OOID”); and extrapolation from the
range [−2, 2] to the range [2, 6] (“Ext.”). Models are ordered by interpolation performance.
The latent variable models are trained and evaluated with the ELBO objective (E); trained
and evaluated with the ML objective (M); and trained with the ELBO objective and evaluated
with the ML objective (E–M). Trivial refers to predicting the empirical means and standard
deviation of the test data. Errors indicate the central 95%-confidence interval. Numbers
which are significantly best (p < 0.05) are boldfaced. Numbers which are very large are
marked as failed with “F”. Numbers which are missing could not be run.

D.8 Details of Synthetic Experiments 217

Sawtooth Int. OOID Ext.
dx =2, dy =1

ConvCNP (AR) 2.59 ±0.01 2.59 ±0.01 2.10 ±0.01
ConvLNP (M) 2.07 ±0.02 2.08 ±0.02 −0.17 ±0.00
ConvCNP 1.93 ±0.04 1.94 ±0.03 −0.18 ±0.00
ConvGNP 1.90 ±0.04 1.91 ±0.03 −0.18 ±0.00
ConvLNP (E) 1.77 ±0.02 1.77 ±0.02 0.33 ±0.02
ConvLNP (E–M) 1.71 ±0.04 1.72 ±0.04 −2.30 ±0.87
Trivial −0.18 ±0.00 −0.18 ±0.00 −0.18 ±0.00
CNP (AR) −0.18 ±0.00 −0.18 ±0.00 −0.18 ±0.00
CNP −0.18 ±0.00 −0.18 ±0.00 −0.18 ±0.00
GNP −0.18 ±0.00 −0.18 ±0.00 −0.18 ±0.00
LNP (M) −0.18 ±0.00 −0.18 ±0.00 −0.18 ±0.00
AGNP −0.18 ±0.00 −0.18 ±0.00 −0.18 ±0.00
ALNP (M) −0.18 ±0.00 −0.18 ±0.00 −0.18 ±0.00
ACNP (AR) −0.18 ±0.00 −0.18 ±0.00 −0.18 ±0.00
ACNP −0.18 ±0.00 −0.18 ±0.00 −0.18 ±0.00
LNP (E–M) −0.19 ±0.00 F −0.86 ±0.02
LNP (E) −0.19 ±0.00 F F
ALNP (E–M) −0.20 ±0.01 −0.18 ±0.00 −0.18 ±0.00
ALNP (E) −0.20 ±0.01 −0.71 ±0.00 −0.33 ±0.00
FullConvGNP

Sawtooth Int. OOID Ext.
dx =2, dy =2

ConvCNP (AR) 0.38 ±0.00 0.38 ±0.00 0.18 ±0.00
ConvLNP (M) 0.31 ±0.01 0.31 ±0.01 −0.32 ±0.00
ConvGNP 0.26 ±0.01 0.26 ±0.01 −0.33 ±0.00
ConvCNP 0.12 ±0.01 0.12 ±0.01 −0.32 ±0.00
ConvLNP (E) 0.04 ±0.00 0.04 ±0.00 −0.30 ±0.00
ConvLNP (E–M) −0.07 ±0.01 −0.07 ±0.01 −0.48 ±0.00
Trivial −0.32 ±0.00 −0.32 ±0.00 −0.32 ±0.00
ALNP (M) −0.32 ±0.00 −0.32 ±0.00 −0.32 ±0.00
CNP (AR) −0.32 ±0.00 −0.32 ±0.00 −0.32 ±0.00
CNP −0.32 ±0.00 −0.32 ±0.00 −0.32 ±0.00
LNP (M) −0.32 ±0.00 −0.32 ±0.00 −0.32 ±0.00
ACNP −0.32 ±0.00 −0.32 ±0.00 −0.32 ±0.00
ACNP (AR) −0.32 ±0.00 −0.32 ±0.00 −0.32 ±0.00
GNP −0.32 ±0.00 −0.32 ±0.00 −0.32 ±0.00
AGNP −0.32 ±0.00 −0.32 ±0.00 −0.32 ±0.00
LNP (E–M) −0.33 ±0.00 −0.54 ±0.00 −0.34 ±0.00
LNP (E) −0.33 ±0.00 −0.54 ±0.00 −0.34 ±0.00
ALNP (E–M) −0.36 ±0.00 −0.33 ±0.00 −0.33 ±0.00
ALNP (E) −0.36 ±0.00 −0.33 ±0.00 −0.33 ±0.00
FullConvGNP

Table D.10 For the sawtooth synthetic experiments with two-dimensional inputs, average
log-likelihoods normalised by the number of target points. Shows for one-dimensional
outputs (dy = 1) and two-dimensional outputs (dy = 2) the performance for interpolation
within the range [−2, 2]2 where the models where trained (“Int.”); interpolation within the
range [2, 6]2 which the models have never seen before (“OOID”); and extrapolation from the
range [−2, 2]2 to the range [2, 6]2 (“Ext.”). Models are ordered by interpolation performance.
The latent variable models are trained and evaluated with the ELBO objective (E); trained
and evaluated with the ML objective (M); and trained with the ELBO objective and evaluated
with the ML objective (E–M). Trivial refers to predicting the empirical means and standard
deviation of the test data. Errors indicate the central 95%-confidence interval. Numbers
which are significantly best (p < 0.05) are boldfaced. Numbers which are very large are
marked as failed with “F”. Numbers which are missing could not be run.

218 Chapter 6 Supplementary Material

Mixture Int. OOID Ext.
dx =1, dy =1

ConvCNP (AR) 0.45±0.04 0.45±0.04 0.30±0.04
ConvLNP (E) 0.12±0.04 0.12±0.04 −0.37±0.03
FullConvGNP −0.05±0.03 −0.05±0.03 −0.49±0.01
ConvLNP −0.06±0.03 −0.06±0.03 −0.88±0.02
ACNP (AR) −0.19±0.02 −1.32±0.01 −1.32±0.01
ConvCNP −0.23±0.04 −0.24±0.04 −1.23±0.01
ConvGNP −0.24±0.02 −0.23±0.02 −1.00±0.02
AGNP −0.41±0.02 −1.03±0.03 −2.61±0.06
ALNP −0.61±0.02 −1.01±0.02 −1.03±0.02
ALNP (E–M) −0.63±0.02 −1.24±0.01 −1.10±0.02
ALNP (E) −0.67±0.02 −1.52±0.02 −2.25±0.03
LNP (E–M) −0.68±0.01 −3.05±0.04 −1.75±0.01
GNP −0.70±0.02 −2.22±0.05 −1.62±0.04
LNP (E) −0.71±0.01 −3.71±0.05 −2.08±0.01
LNP −0.72±0.01 −1.46±0.01 −1.29±0.02
ACNP −0.79±0.02 −1.31±0.01 −1.25±0.01
CNP (AR) −1.00±0.02 −1.15±0.02 −1.09±0.02
CNP −1.05±0.02 −1.14±0.02 −1.15±0.02
ConvLNP (E–M) −1.41±0.15 −1.43±0.13 −3.40±0.06
Trivial −1.32±0.00 −1.32±0.00 −1.32±0.00

Mixture Int. OOID Ext.
dx =1, dy =2

ConvLNP (E) −0.05±0.03 −0.05±0.03 −0.50±0.02
ConvCNP (AR) −0.17±0.02 −0.17±0.02 −0.29±0.02
FullConvGNP −0.27±0.01 −0.27±0.01 −0.63±0.01
ConvGNP −0.29±0.02 −0.29±0.02 −2.59±0.06
ACNP (AR) −0.35±0.02 −1.43±0.02 −1.43±0.02
ConvLNP −0.39±0.03 −0.40±0.03 −1.10±0.02
AGNP −0.57±0.02 −3.29±0.07 −3.05±0.06
GNP −0.60±0.01 −1.70±0.03 −1.67±0.03
ConvCNP −0.68±0.02 −0.68±0.02 −1.39±0.01
ALNP −0.76±0.02 −1.19±0.02 −1.19±0.02
LNP −0.89±0.01 −3.18±0.05 −1.40±0.02
LNP (E–M) −0.89±0.01 −4.43±0.07 −1.62±0.02
ALNP (E–M) −0.92±0.02 −1.47±0.03 −1.46±0.03
LNP (E) −0.92±0.01 −4.71±0.07 −1.86±0.01
ACNP −0.93±0.02 −1.42±0.02 −1.53±0.03
ALNP (E) −0.95±0.02 −1.75±0.04 −1.73±0.04
CNP (AR) −1.15±0.02 −1.27±0.02 −1.21±0.02
CNP −1.18±0.02 −1.32±0.03 −1.27±0.02
ConvLNP (E–M) −3.45±0.07 −3.40±0.07 −5.30±0.07
Trivial −1.46±0.00 −1.46±0.00 −1.46±0.00

Table D.11 For the mixture synthetic experiments with one-dimensional inputs, average
log-likelihoods normalised by the number of target points. Shows for one-dimensional
outputs (dy = 1) and two-dimensional outputs (dy = 2) the performance for interpolation
within the range [−2, 2] where the models where trained (“Int.”); interpolation within the
range [2, 6] which the models have never seen before (“OOID”); and extrapolation from the
range [−2, 2] to the range [2, 6] (“Ext.”). Models are ordered by interpolation performance.
The latent variable models are trained and evaluated with the ELBO objective (E); trained
and evaluated with the ML objective (M); and trained with the ELBO objective and evaluated
with the ML objective (E–M). Trivial refers to predicting the empirical means and standard
deviation of the test data. Errors indicate the central 95%-confidence interval. Numbers
which are significantly best (p < 0.05) are boldfaced. Numbers which are very large are
marked as failed with “F”. Numbers which are missing could not be run.

D.8 Details of Synthetic Experiments 219

Mixture Int. OOID Ext.
dx =2, dy =1

ConvCNP (AR) −0.10 ±0.03 −0.10 ±0.03 −0.34 ±0.03
ConvCNP −0.49 ±0.03 −0.49 ±0.03 −1.45 ±0.02
ConvGNP −0.50 ±0.02 −0.50 ±0.02 −1.24 ±0.02
ConvLNP (M) −0.57 ±0.02 −0.57 ±0.02 −1.07 ±0.02
ConvLNP (E) −0.63 ±0.02 −0.63 ±0.02 −1.08 ±0.02
ALNP (M) −0.73 ±0.02 −1.04 ±0.02 −1.05 ±0.02
ConvLNP (E–M) −0.76 ±0.02 −0.76 ±0.02 −1.37 ±0.02
ACNP (AR) −0.77 ±0.01 −1.28 ±0.01 −1.30 ±0.01
AGNP −0.78 ±0.01 −1.32 ±0.02 −1.32 ±0.02
ACNP −0.91 ±0.02 −1.29 ±0.01 −1.17 ±0.02
LNP (M) −0.91 ±0.02 −1.44 ±0.04 −1.19 ±0.02
LNP (E–M) −0.92 ±0.02 −1.51 ±0.02 −1.38 ±0.02
LNP (E) −0.93 ±0.02 −1.74 ±0.03 −1.44 ±0.02
ALNP (E–M) −1.00 ±0.02 −1.07 ±0.02 −1.08 ±0.02
ALNP (E) −1.03 ±0.02 −1.08 ±0.02 −1.09 ±0.02
CNP (AR) −1.06 ±0.02 −1.07 ±0.02 −1.08 ±0.02
GNP −1.06 ±0.02 −1.09 ±0.02 −1.08 ±0.02
CNP −1.07 ±0.02 −1.09 ±0.02 −1.10 ±0.02
Trivial −1.32 ±0.00 −1.32 ±0.00 −1.32 ±0.00
FullConvGNP

Mixture Int. OOID Ext.
dx =2, dy =2

ConvCNP (AR) −0.62 ±0.01 −0.62 ±0.01 −0.79 ±0.01
ConvGNP −0.74 ±0.01 −0.74 ±0.01 −1.43 ±0.02
ConvLNP (M) −0.78 ±0.02 −0.79 ±0.02 −1.25 ±0.02
ConvCNP −0.85 ±0.01 −0.85 ±0.01 −1.50 ±0.02
ACNP (AR) −0.85 ±0.01 −4.30 ±0.09 −4.24 ±0.09
ALNP (M) −0.88 ±0.01 −1.41 ±0.03 −1.21 ±0.02
ConvLNP (E) −0.92 ±0.01 −0.92 ±0.01 −1.41 ±0.02
AGNP −0.93 ±0.01 −1.34 ±0.01 −1.21 ±0.02
ACNP −0.99 ±0.02 −4.19 ±0.10 −1.27 ±0.02
ConvLNP (E–M) −1.05 ±0.01 −1.05 ±0.01 −1.73 ±0.03
LNP (M) −1.07 ±0.01 −4.04 ±0.11 −1.31 ±0.02
ALNP (E–M) −1.11 ±0.02 −2.65 ±0.62 −1.23 ±0.02
ALNP (E) −1.12 ±0.02 −8.22 ±7.64 −1.26 ±0.02
GNP −1.20 ±0.02 −1.39 ±0.03 −1.21 ±0.02
CNP (AR) −1.20 ±0.02 −2.61 ±0.07 −1.32 ±0.02
CNP −1.20 ±0.02 −2.60 ±0.08 −1.23 ±0.02
LNP (E–M) −1.20 ±0.02 −3.23 ±0.10 −1.24 ±0.02
LNP (E) −1.20 ±0.02 −3.25 ±0.10 −1.24 ±0.02
Trivial −1.46 ±0.00 −1.46 ±0.00 −1.46 ±0.00
FullConvGNP

Table D.12 For the mixture synthetic experiments with two-dimensional inputs, average
log-likelihoods normalised by the number of target points. Shows for one-dimensional
outputs (dy = 1) and two-dimensional outputs (dy = 2) the performance for interpolation
within the range [−2, 2]2 where the models where trained (“Int.”); interpolation within the
range [2, 6]2 which the models have never seen before (“OOID”); and extrapolation from the
range [−2, 2]2 to the range [2, 6]2 (“Ext.”). Models are ordered by interpolation performance.
The latent variable models are trained and evaluated with the ELBO objective (E); trained
and evaluated with the ML objective (M); and trained with the ELBO objective and evaluated
with the ML objective (E–M). Trivial refers to predicting the empirical means and standard
deviation of the test data. Errors indicate the central 95%-confidence interval. Numbers
which are significantly best (p < 0.05) are boldfaced. Numbers which are very large are
marked as failed with “F”. Numbers which are missing could not be run.

220 Chapter 6 Supplementary Material

D.9 Details of Sim-to-Real Transfer Experiments

D.9.1 Description of Experiment

Our goal will be to make predictions for the famous hare–lynx data set. The hare–lynx
data set is a time series from 1845 to 1935 recording yearly population counts of a
population of Snowshoe hares and a population of Canadian lynx (MacLulich, 1937).
A digital version extracted from the original graph by MacLulich (1937) is available by
Hundley (2022).2 Hundley (2022), the author of this digital source, says that other
authors caution that the hare–lynx data is actually a composition of multiple time
series, and presents the data with that caution. We, therefore, also present the data
with this caution. Figure D.6a visualises the hare–lynx data set.

To make predictions for the hare–lynx data set, we use the Lotka–Volterra equations
(Lotka, 1910; Volterra, 1926), also called the predator–prey equations. The Lotka–
Volterra equations are an idealised mathematical model for the population counts of a
prey population and a predator population:

prey population: x′(t) = αx(t)− βx(t)y(t), (D.36)
predator population: y′(t) = −δy(t) + γx(t)y(t). (D.37)

These differential equations say that the prey population naturally grows exponentially
with rate α, and that the predator population naturally decays exponentially with rate
δ. In addition, the predators hunt the prey. The resulting additional growth in the
predator population and the resulting additional decrease in the prey population are
both proportional to the product of the densities. In this idealised mathematical form,
the population counts converge to a smooth, noiseless limit cycle and then perfectly
track this limit cycle ever after. This is unlike real-world predator–prey population
counts, which exhibit noisy behaviour and imperfect cycles. We therefore consider a
stochastic version of the Lotka–Volterra equations, given by the following two coupled
stochastic differential equations:

dXt = αXt dt− βYtXt dt+ σXν
t dW (1)

t , (D.38)
dYt = −γXt dt+ δYtXt dt+ σY ν

t dW (2)
t (D.39)

where W (1) and W (2) are two independent Brownian motions. Compared to the
Lotka–Volterra equations, equation D.38 and equation D.39 have two additional

2See http://people.whitman.edu/~hundledr/courses/M250F03/LynxHare.txt.

http://people.whitman.edu/~hundledr/courses/M250F03/LynxHare.txt

D.9 Details of Sim-to-Real Transfer Experiments 221

1840 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940
Year

0

50

100

150

P
op

ul
at

io
n

(×
1k

)

Hares
Lynx

(a) Illustration of the hare–lynx data set

0

50

100

150

0

200

400 Hares
Lynx

0 20 40 60 80 100

0

100

200

0 20 40 60 80 100

0

50

100

(b) Four samples from the proposed stochastic version of the Lotka–Volterra equations equation D.38
and equation D.39. The parameters of equation D.38 and equation D.39 are sampled according to
Table D.13.

Fig. D.6 Hare–lynx data set and proposed stochastic simulator

terms, σXν
t dW (1)

t and σY ν
t dW (2)

t , which introduce noisy behaviour. In these terms,
multiplying by Xν

t and Y ν
t makes the noise go to zero when Xt and Yt become small,

ensuring that Xt and Yt remain positive. In addition, we multiply by a parameter
σ > 0 to control the magnitude of the noise, and we raise Xt and Yt to a power ν > 0
to control how quickly the noise grows as Xt and Yt grow. Namely, Xt naturally grows
exponentially, so, by adding noise of magnitude proportional to Xt, we risk large spikes
in the prey population. To moderate this behaviour, we choose ν to be strictly less
than one. Finally, to obtain a variety of magnitudes of population counts, we multiply
the realisation with a scale η.

After simulating from equation D.38 and equation D.39 a few times, we settle on
ν = 1

6 . For the remainder of the parameters, we simply manually play around with
equation D.38 and equation D.39, settle on parameter ranges that look reasonable, and
randomly sample parameters from those intervals. Table D.13 summarises the sampling

222 Chapter 6 Supplementary Material

Parameter Distribution

Initial condition X−10 Unif([5, 100])
Initial condition Y−10 Unif([5, 100])
α Unif([0.2, 0.8])
β Unif([0.04, 0.08])
γ Unif([0.8, 1.2])
δ Unif([0.04, 0.08])
ν Fixed to 1/6
σ Unif([0.5, 10])
η Unif([1, 5])

Table D.13 Sampling distributions for the parameters of the stochastic version of the Lotka–
Volterra equations equation D.38 and equation D.39. These equations are simulated on a
dense grid spanning [−10, 100]. The table also shows the distribution for the initial conditions
at t = −10. To not depend too heavily on these initial conditions, the simulation results on
[−10, 0] are discarded.

distributions for all parameters of equation D.38 and equation D.39. Figure D.6b shows
four samples from the proposed stochastic model.

To generate a meta–data set, we simulate equation D.38 and equation D.39 on a
dense grid spanning 110 years, throw away the first 10 years, and retain between 150
and 250 data points for Xt and Yt. The numbers of data points and the locations of the
data points are sampled separately for Xt and Yt. Hence, whereas the hare–lynx data is
regularly spaced and the populations are always simultaneously observed, our simulator
generates data at arbitrary and nonsimultaneous points in time. We split these data
sets into context and target sets in three different ways. To train the models, for every
batch, we randomly choose one of the interpolation, forecasting or reconstruction tasks
by rolling a three-sided die. We will also perform these tasks on the real hare–lynx
data; in that case, for interpolation, we let the number of target points per output be
between one and fifteen. The tasks on simulated and real data are similar, but slightly
differ in the number of context and target points.

To deal with the positivity of population counts, we transform the marginals of all
models to distributions on (0,∞) by pushing the marginals through x 7→ log(1 + x).

For this experiment, the learning rate is 1 · 10−4, the margin is 1, and the points
per unit is 4. We trained the models for 200 epochs.

The convolutional models use a U-Net architecture with seven layers instead of six
where, in the first layer, the stride is one instead of two. For the kernel architecture of
the FullConvGNP, we reduce the points per unit and the number of channels in the
U-Net by a factor two.

D.9 Details of Sim-to-Real Transfer Experiments 223

Model Int. (S) For. (S) Rec. (S) Int. (R) For. (R) Rec. (R)

FullConvGNP −3.29±0.02 −3.46±0.02 −3.79±0.02 −4.16±0.04 −4.28±0.04 −4.45±0.00
ConvCNP (AR) −3.30±0.02 −3.47±0.02 −3.60±0.02 −4.10±0.03 −4.27±0.03 −4.32±0.01
ConvNP (ML) −3.41±0.02 −3.84±0.02 −4.44±0.02 −4.13±0.04 −4.45±0.05 −4.54±0.01
ConvGNP −3.47±0.02 −3.65±0.02 −4.15±0.02 −4.21±0.05 −4.82±0.13 −4.61±0.01
ConvCNP −3.47±0.02 −4.06±0.02 −4.85±0.02 −4.17±0.04 −4.70±0.06 −4.97±0.01
ConvNP (ELBO) −3.77±0.02 −3.83±0.02 −4.12±0.02 −5.45±0.05 −5.47±0.07 −6.39±0.05
ANP (ML) −4.09±0.02 −4.32±0.02 −4.55±0.02 −4.31±0.03 −4.43±0.04 −4.49±0.01
ANP (ELBO–ML) −4.22±0.02 −4.54±0.02 −4.80±0.02 −4.58±0.11 −4.58±0.04 −4.68±0.01
ACNP (AR) −4.23±0.02 −4.44±0.02 −4.58±0.02 −4.40±0.03 −4.55±0.04 −4.59±0.02
ANP (ELBO) −4.32±0.03 −4.58±0.02 −4.82±0.02 −4.71±0.15 −4.63±0.05 −4.70±0.01
ACNP −4.34±0.02 −4.65±0.02 −4.88±0.02 −4.43±0.04 −4.58±0.04 −4.74±0.00
ConvNP (E.–M.) −6.71±0.05 −8.44±0.11 F −7.20±0.31 F F

Table D.14 Normalised log-likelihoods in the predator–prey experiments. Shows the perfor-
mance for interpolation (“Int.”), forecasting (“For.”), and reconstruction (“Rec.”) on simulated
(“S”) and real (“R”) data. Models are ordered by interpolation performance on simulated
data. The latent variable models are trained and evaluated with the ELBO objective (E);
trained and evaluated with the ML objective (M); and trained with the ELBO objective and
evaluated with the ML objective (E–M). Errors indicate the central 95%-confidence interval.
Numbers which are significantly best (p < 0.05) are boldfaced. Numbers which are very large
are marked as failed with “F”. Numbers which are missing could not be run.

D.9.2 Full Results

In Table D.14, we present the full results for the sim-to-real experiments.

224 Chapter 6 Supplementary Material

−10
0

10

F
Z

−10
0

10

F
1

−10
0

F
2

−10
0

10

F
3

−20

0

F
4

0

20

F
5

0.0 0.2 0.4 0.6 0.8 1.0

Time (s)

−20

0

F
6

Fig. D.7 Example of trial in the EEG data set. Note that the signals for all electrodes appear
correlated, but are subtly different.

D.10 Details of Electroencephalography Experiments

We explore an electroencephalography data set collected from 122 subjects (Begleiter,
2022). There are two groups of subjects: alcoholic and control. Every subject was
subjected to a single stimulus or two stimuli, and their response was measured with
64 electrodes placed on a subject’s scalp. These measurements are in terms of trials,
where a trial consists of 256 samples of the electrodes spanning one second. The
data sets contains up to 120 trials for each subject. The data is available at https:
//archive.ics.uci.edu/ml/datasets/eeg+database and the collection is described in detail
by Zhang et al. (1995). In this experiment, we focus only on seven frontal electrodes:
FZ, F1, F2, F3, F4, F5, and F6. Figure D.7 illustrates a trial of a subject, showing the
samples for these seven electrodes.

We randomly split all subjects into three sets: an evaluation set consisting of ten
subjects, a cross-validation set consisting of ten other subjects, and a training set
consisting of all remaining subjects. For each of these sets, we create a meta–data
set by aggregating the trials for all subjects. We split every trial into a context and
target set in the same three ways as for the predator–prey experiment. First, for all
seven electrodes separately, randomly designate between 50 and 256 points to be the
target points and let the remainder (between 0 and 206) be the context points. This

https://archive.ics.uci.edu/ml/datasets/eeg+database
https://archive.ics.uci.edu/ml/datasets/eeg+database

D.10 Details of Electroencephalography Experiments 225

task is called interpolation and is the primary measure of performance. Additionally,
randomly choose one of the seven electrodes and, for that choice, split the data in two
exactly like for forecasting. For all other electrodes, append all data to the context set.
This task is called reconstruction and measures the model’s ability to infer a signal
for one electrode from the others. We train all models on the interpolation task, and
evaluate the models on the interpolation and reconstruction task.

For this experiment, the learning rate is 5 · 10−5, the margin is 0.1, and the points
per unit is 256. We trained the models for 1000 epochs. For the FullConvGNP, the
learning rate is 2 · 10−4. The training run for the FullConvGNP was terminated after
84 hours, reaching epoch 127.

The convolutional models use a U-Net architecture where, in the first layer, the
stride is one instead of two. In addition, the number of channels are adjusted as follows:
the ConvCNP and ConvGNP use 128 channels, the ConvLNP uses 96 channels, and
the FullConvGNP uses 64 channels. The length scales of the Gaussian kernels of the
convolutional model is initialised to 0.77/256. To scale to seven outputs, the deep
set–based and attentive models reuse the same encoder for every output dimension.

226 Chapter 6 Supplementary Material

D.11 Details of Environmental Data Assimilation
Experiment

In this section we provide further details on the Antarctic cloud cover data assimilation
experiment described in Section 6.4.4.

D.11.1 Data considerations

Data sources. Daily-averaged cloud cover reanalysis data was obtained from ERA5
(Hersbach et al., 2020). An Antarctic land mask and elevation field was obtained from
the BedMachine dataset (Morlighem, 2020).

Figure D.8 shows an empircal density of the ERA5 cloud cover values calculated
over the models’ training period of 2000-2013. The spikes at 0 and 1 correspond largely
to values of exactly 0 and exactly 1. This motivates the beta-categorical likelihood
described in Section 6.4.4.

Fig. D.8 Empirical density of ERA5 cloud cover fraction computed over the period 2000-2013.

Data preprocessing. The cloud cover data and land/elevation auxiliary data
were regridded from lat/lon to a Southern Hemisphere Equal Area Scalable Earth 2
(EASE2) grid at 25 km resolution and cropping to a size of 280 × 280. This centres
the data on the South Pole.

Data normalisation. We normalised the data before passing it to the convolutional
NP models. The cloud cover and land mask data already took appropriate normalised
values in [0, 1]. The elevation field was normalised from metres to values in [0, 1].

The input coordinates x were normalised from metres to take values in [−1, 1].

D.11 Details of Environmental Data Assimilation Experiment 227

D.11.2 Model considerations

Here we provide details on the training procedure and architectures for each of the
convolutional NP models in the Antarctic data assimilation experiment.

Generating the training, validation, and test tasks. Following meta-learning
principles, we collect data from day τ into a task Dτ . Each task Dτ was generated
by first drawing the integer number of simulated cloud cover context points N (c) ∼
Unif{1, 2, . . . 500}. Letting N (c) vary encourages the model to learn to deal with both
data-sparse and data-rich scenarios. The number of target points N (t) was fixed to a
value of 2,000.

Next, the input locations x(c)
τ and x(t)

τ were sampled uniformly at random across
the entire 280× 280 input space and the corresponding yτ values were sampled without
observation noise.

For the training dates, the random seed used for generating Dτ is updated every
epoch, allowing for an infinitely growing simulated training data set. In contrast,
for the validation and test dates, the random seeds were held fixed so that metrics
computed over the validation and test sets are not stochastic.

Training procedure. Each model was trained for 150 epochs on 14 years of data
from 2000–2013. An Adam optimiser was used with a learning rate of 5× 10−5 and a
batch size of 2. For the loss functions we use a negative log-likelihood loss function for
the ConvCNP and ConvGNP. For the ConvLNP we use the ELBO objective and fix
the variance of the observation noise to 0.01 for the first four epochs. Validation data
from 2014–2017 was used for checkpointing the model weights using the per-datapoint
predictive log-likelihood. The two year period of 2018–2019 data was reserved for the
test set.

The time taken to train each model on a Tesla V100 GPU is as follows:

• ConvCNP: 25.0 hours,

• ConvGNP: 27.5 hours,

• ConvLNP: 43.6 hours.

Architectures. For each model, the U-Net component of the encoder uses 5×5 con-
volutional kernels with the following sequence of channel numbers (d.s. = 2×2 downsam-
ple layer, u.s. = 2×2 upsample layer): 16 d.s.−−→ 32 d.s.−−→ 64 d.s.−−→ 128 u.s.−−→ 64 u.s.−−→ 32 u.s.−−→ 16.
We use bilinear resize operators for the upsampling layers to fix checkerboard artifacts
that we encountered when using standard zero-padding upsampling (Odena et al., 2016).
We use a margin of 0.1 and 150 points per unit for the encoder’s internal discretisation.

228 Chapter 6 Supplementary Material

The length scales of the Gaussian kernels for both the encoder and decoder SetConv
layers are set to 1/150 and held fixed during training. These architecture choices result
in a receptive field of 0.433 in normalised input space, or roughly 1.500 km in raw input
space, spanning around 20% of the region in Figure 6.6 in either dimension.

For the ConvGNP we use 128 basis functions for the low-rank covariance parame-
terisation described in Markou et al. 2021.

For the ConvLNP we use an 8-dimensional latent variable and evaluate the ML
objective (Foong et al., 2020) using 8 latent samples.

The number of learnable parameters for each model is as follows:

• ConvCNP: 618 k,

• ConvGNP: 621 k,

• ConvLNP: 1.234 k (increase due to second UNet architecture after the latent
variable).

The difference in parameters from switching to a beta-categorical likelihood from a
Gaussian likelihood is negligible.

Input data. Each model receives two context sets as input. The first contains
observations of the simulated ERA5 daily-average cloud cover. The second contains
a set of 6 gridded auxiliary variables. These are elevation, land mask, cos(2π ×
day of year/365), sin(2π × day of year/365), x1, and x2. The elevation and land mask
auxiliary fields allow the models to predict spatial non-stationarity. For example, the
convolutional filters of the model’s encoder could learn how cloud cover around the
Antarctic coastline behaves differently to the centre of the continent. The cos and
sin variables inform the model at what time of year Dτ corresponds to, helping with
learning seasonal variations in the data. The x1 and x2 inputs again help with breaking
translation equivariance in the convolutional filters by informing the model where in
input space the data corresponds to.

D.11.3 Antarctic cloud cover model samples

Figure D.9 gives a detailed breakdown of sample extrapolation ability, showing seven
samples from the four Antarctic cloud cover models. The AR ConvCNP samples
display remarkable structure and variation while still closely interpolating the context
points. The samples also provide interesting scenarios in the gaps between the context
points on the left hand side.

D.11 Details of Environmental Data Assimilation Experiment 229

In contrast, the ConvCNP samples are incoherent, underestimating the probability
of joint events.

The ConvLNP samples were generated by sampling from the latent variable and
then computing the mean of the marginal distributions. As is visible in Figure D.9, the
ConvLNP displays low sample variance with respect to the latent variable. However,
to the best of our knowledge we used a faithful reproduction of the original ConvLNP
model, so we leave a more rigorous treatment of this undesirable behaviour to future
work.

For all the non-AR models, the limited receptive field size leads to samples on the
right hand side becoming independent of the context observations on the left hand
side after roughly 750 km of distance from them. This results in the models defaulting
to some mean representation of the data. It is interesting to see that all the non-AR
models display similar marginal mean structure, with greater cloud cover towards
the centre of the continent and lower cloud cover towards the coastline, followed by
increased cloud levels over the Southern Ocean.

The AR samples were drawn on a sparse 70x70 grid spanning the entire input
space to save compute time. The ConvCNP model was then conditioned on these AR
samples and the predictive mean was computed over the dense 280x280 target space.
It took 14 minutes to generate these AR ConvCNP samples on a Tesla V100 GPU.

230 Chapter 6 Supplementary Material

Fig. D.9 Seven samples from each model in the Antarctic cloud cover sample extrapolation
task for 25/06/2018.

D.12 Details of Climate Downscaling Experiments 231

D.12 Details of Climate Downscaling Experiments

D.12.1 Description of Experiment

The MLP ConvGNP (Markou et al., 2022) can be used to successfully model depen-
dencies between outputs in a statistical downscaling task, improving log-likelihoods
over the MLP ConvCNP (Vaughan et al., 2022) and enabling coherent samples. In this
experiment, we demonstrate that the AR ConvCNP can also be used for this purpose.

The goal of this experiment is to estimate the maximum daily temperature at
589 weather stations around Germany. To estimate these temperatures, we follow
Vaughan et al. (2022) and use 25 coarse-grained ERA-Interim reanalysis variables (Dee
et al., 2011) in combination with 1 km–resolution elevation data (Earth Resources
Observation and Science Center, U.S. Geological Survey, U.S. Department of the
Interior, 1997). We also consider a second setup where we reveal some of the weather
station observations. These revealed weather station observations can be used by the
models to aid downscaling performance.

The ERA-Interim reanalysis variables considered are tabulated in Table D.15. In
contrast to previous downscaling work, which degrade reanalysis data to between 2◦ and
2.5◦, we opt to use the ERA-Reanalysis data at the native 0.75◦ resolution, consistent
with the latest high-resolution climate models with horizontal resolution ranging from
0.5◦ to 1.0◦. All variables are spatially subset to between 6◦ to 16◦ longitude and 47◦

to 55◦ latitude, covering Germany. The weather station data are a subselection from of
the European Climate Assessment & Dataset (Tank et al., 2002) and are available at
https://www.ecad.eu; we use the blended data. Like for the ERA-Reanaysis variables,
we take the weather stations located within the aforementioned square. The locations
of the weather stations around Germany are visualised in Figure D.10. The 1 km–
resolution elevation data is taken from the United States Geological Survey GTOPO30
elevation data set available at https://doi.org/10.5066/F7DF6PQS. This provides
global elevation data at 30-arc second resolution, which is approximately 1 km.

Following the VALUE framework (Maraun et al., 2015), we consider all days of
the years 1979–2008 and split these years into five folds. We use the first four folds
(spanning 1979–2003) for training, holding out the last 1000 days for cross-validation;
and use the fifth fold (spanning 2003–2008) for evaluation.

https://www.ecad.eu
https://doi.org/10.5066/F7DF6PQS

232 Chapter 6 Supplementary Material

Variable Level Units
Surface

Maximum temperature 2 m degrees Celsius
Mean temperature 2 m degrees Celsius
Northward wind 10 m knots
Eastward wind 10 m knots

Upper atmosphere
Specific humidity 850, 700, and 500 hPa degrees Celsius
Mean temperature 850, 700, and 500 hPa degrees Celsius
Northward wind 850, 700, and 500 hPa knots
Eastward wind 850, 700, and 500 hPa knots

Invariant
Angle of sub-grid-scale orography surface
Anisotropy of sub-grid-scale orography surface
Standard deviation of filtered
sub-grid-scale orography surface
Standard deviation of orography surface
Geopotential surface metres
Longitude surface degrees Celsius
Latitude surface degrees Celsius

Temporal
Fractional position in the year t transformed encoded with t 7→ (cos(2πt), sin(2πt))

Table D.15 ERA-Interim reanalysis predictors.

D.12 Details of Climate Downscaling Experiments 233

Fig. D.10 Locations of the 589 weather stations around Germany in the downscaling experi-
ments.

D.12.2 Multiscale Convolutional Architecture

Deploying the AR ConvCNP in this downscaling experiment comes with a significant
challenge. Because the elevation data has a fine resolution of 1 km, we expect that
predictions by the AR ConvCNP will vary roughly also on this length scale. In the
autoregressive sampling procedure (Procedure 6.2.1), samples from the model will be
fed back into the model. Therefore, the AR ConvCNP must handle context data which
varies on a 1 km spatial scale, which means that the discretisation of the AR ConvCNP
must roughly be a 1 km–resolution grid. Unfortunately, making the discretisation
this fine is prohibitively expensive and imposes prohibitive memory requirements. It
is this limitation that prevents us from extending the Vaughan et al. (2022)’s MLP
ConvCNP and Markou et al. (2022)’s MLP ConvGNP to include additional weather
station observations. We must therefore innovate on the AR ConvCNP design to
come up with a convolutional architecture that can handle such a fine discretisation at
reasonable computational expense.

The architecture that we propose is a multiscale architecture operating on multiple
spatial length scales. Let us divide the context set D = Dlr ∪Dmr ∪Dhr into a low-
resolution component Dlr, a medium-resolution component Dmr, and a high-resolution
component Dhr. Let the low-resolution component Dlr consist of features of the context
set that vary on a long spatial length scale, the medium-resolution component Dmr

of features that vary on a medium-range spatial length scale, and the high-resolution
component Dhr of features that vary on a short spatial length scale. The central
assumption of the architecture is that predictions for target points depend on precise
short-length-scale details Dhr nearby, but that this dependence weakens as we move
away from the target point, starting to depend more on broad-stroke long-length-

234 Chapter 6 Supplementary Material

scale components Dlr. For example, predictions might depend on detailed orographic
information nearby, but more on general orographic shapes farther away.

Figure D.11 depicts the multiscale architecture. The architecture is a cascade of
three convolutional deep sets, parametrised by three CNNs; please see the caption.
The low-resolution CNN handles the context data Dlr with a long spatial length scale.
Because these features have a long spatial length scale, the CNN can get away with a
low-resolution discretisation. The output of the low-resolution CNN then feeds into
a medium-resolution CNN. The medium-resolution CNN handles the context data
Dmr with a medium spatial length scale and has a medium-resolution discretisation.
Finally, the output of the medium-resolution CNN feeds into a high-resolution CNN.
This CNN handles the context data Dhr with a short spatial length scale and has a
high-resolution discretisation.

The key to the computational efficiency of this architecture is that we construct the
high-resolution discretisation only locally to the target points: a small square covering
0.25◦ more than the most extremal target points. If the target points are confined to
a small region, then the high-resolution grid will also be small, covering only 0.25◦

more than that region. Crucially, the high-resolution grid will not be constructed over
all of Germany, like it would if we were to more naively apply the ConvCNP with a
high-resolution discretisation, incurring prohitive computational cost. Even though
the high-resolution grid is only constructed locally to the target points, the model can
still capture long-range dependencies via the medium-resolution and low-resolution
grids. Namely, the medium-resolution grid is a square covering 5◦ more than the
most extremal target points, and the low-resolution grid covers all of Germany; see
Figure D.11. To utilise this computational gain, the target points must be confined to
a small region. This perfectly synergises with the autoregressive sampling procedure
(Procedure 6.2.1), because this procedure evaluates the model one target point at a time.
The training procedure, however, must be adapted. During training, we subsample the
target points to ensure that the target set is always confined to a small square, which
is described in Section D.12.4.

During the autoregressive sampling procedure, the AR ConvCNP takes in earlier
AR samples from the model. In the architectures of the MLP ConvCNP and MLP
ConvGNP, these is no natural context data to which these samples can be appended.
Therefore, in addition to the ERA-Interim reanalysis variables and the elevation data,
we also let the AR ConvCNP take in observed weather stations as context data. We
will append the earlier AR samples to these weather station context data. To have
the model make appropriate use of the weather station context set, we must randomly

D.12 Details of Climate Downscaling Experiments 235

divide the weather stations observations over the context and target set, which we
describe in Section D.12.4. We let the low-resolution context data Dlr consist of the 25
coarse-grained ERA-Interim reanalysis variables, and let the medium-resolution Dmr

and high-resolution context data Dhr both consist of the weather station observations
(and earlier AR samples) and the 1 km–resolution elevation data. When the 1 km–
resolution data is fed to the medium-resolution CNN, the data loses some detail,
because the internal discretisation of the medium-resolution CNN is coarser than the
data; however, when it is fed to the high-resolution CNN, the data retains its detail.
The same holds for the weather station observations (and earlier AR samples).

D.12.3 Architectures

MLP ConvCNP and MLP ConvGNP (Markou et al., 2022; Vaughan et al.,
2022). The MLP ConvCNP and MLP ConvGNP are a respectively a ConvCNP and
ConvGNP where the decoder decθ = fuseθ ◦ dec′θ is decomposed into a convolutional
architecture dec′θ followed by a pointwise MLP fuseθ:

fuseθ(z(•)) = MLPθ(z(•), elevation(•)). (D.40)

In this architecture, the ERA-Interim variables are incorporated via the convolutional
architecture, producing the encoding z(•). On the other hand, as equation D.40 shows,
the 1 km–resolution elevation data is included via the pointwise MLP fuseθ.

Parametrise dec′θ with a seven-layer residual convolutional neural network (He
et al., 2016). Every residual layer involves one depthwise-separable convolutional
filter (Chollet, 2017) with kernel size three followed by a pointwise MLP. Every layer
has 128 channels, and the network also outputs 128 channels. The discretisation for
dec′θ is the grid of the ERA-Interim reanalysis variables. Parametrise fuseθ with a
three-hidden-layer MLP of width 128.

AR ConvCNP. The AR ConvCNP does not use the pointwise MLP fuseθ to
incorporate the 1 km–resolution elevation data. Instead, it is a normal ConvCNP where
the convolutional architecture is implemented by the multi-scale architecture described
in Figure D.11.

Parametrise CNNlr with a depthwise-separable residual convolutional neural network
like in the MLP ConvCNP and MLP ConvGNP, but use six layers instead of seven. Let
CNNlr output 64 channels. The discretisation for CNNlr is the grid of the ERA-Interim
reanalysis variables. Parametrise CNNmr with a U-Net (Ronneberger et al., 2015) using
an architecture similar to what we have been using. Before the U-turn, let the U-Net

236 Chapter 6 Supplementary Material

have five convolutional layers with kernel size five, stride one for the first layer and
stride two afterwards, 64 output channels for the first three layers and 128 output
channels afterwards. After the U-turn, instead of using transposed convolutions, use
regular convolutions combined with an upsampling layer using bilinear interpolation.
Let CNNmr output 64 channels. The receptive field of CNNmr is approximately 10◦.
The discretisation for CNNmr is centred around the target points with margin 5◦.
Parametrise CNNhr with a U-Net like for CNNhr, but with four convolutional layers
before the U-turn. The receptive field of CNNhr is approximately 0.5◦. The discretisation
for CNNhr is centred around the target points with margin 0.25◦.

D.12.4 Training Details

MLP ConvCNP and MLP ConvGNP. The MLP ConvCNP and MLP ConvGNP
are trained with learning rate 2.5 · 10−5 for 500 epochs. For the MLP ConvGNP, to
encourage the covariance to fit, we fix the variance of the decoder to 10−4I for the first
ten epochs.

AR ConvCNP. The AR ConvCNP is trained with learning rate 1 · 10−5 for 500
epochs. During training and cross-validation, the target points are subsampled to lie in
a 3◦× 3◦ square. For training, the number of target points is ensured to be at least ten;
and for cross-validation, at least one. The size of the cross-validation set is increased
ten fold.

Sampling of data. For the MLP ConvCNP and MLP ConvGNP, since these
architectures cannot take in weather station observations, all weather stations are used
as context data. For the AR ConvCNP, a data set is split into a context and target set
by randomly selecting n points as context points and letting the remainder be target
points. Specifically, the number of context points n is sampled from p(n) ∝ e−0.01n.
This splitting is done after subsampling the 3◦ × 3◦ square.

D.13 Alternate AR Procedure with Auxiliary Data 237

D.13 Alternate AR Procedure with Auxiliary Data

We propose an additional procedure which uses autoregressive sampling with auxiliary
data to generate more expressive marginal predictives. The input points of the auxiliary
data are chosen randomly, and then sampled autoregressively before sampling the
target points. Finally, we discard the sampled values for the auxiliary data, but retain
the samples for the target points. Adding auxiliary points in this way allows the model
to roll out autoregressively with more steps, even if the target set is small (or just a
single point). We describe the procedure below:

Procedure D.13.1 (Autoregressive application of neural process with auxiliary data).
For a neural process πθ, context set D(c) = (x(c),y(c)), a target input x(t), a distribution
r over X , a number of auxiliary data points R ∈ N, and a number of trajectories
M ∈ N, let AuxARx(t)(πθ, D(c), r, R,M) be the distribution defined as follows. We first
autoregressively sample the auxiliary data trajectories at random locations sampled
from r:

for j = 1, . . . ,M and ℓ = 1, . . . , R, x
(aux,j)
ℓ ∼ r, (D.41)

for j = 1, . . . ,M, y(aux,j) ∼ ARx(aux,j)(πθ, D(c)). (D.42)

Next, conditioned on the auxiliary data, we sample the target point of interest to
make predictions. We then marginalise out the auxiliary data by averaging over the
M trajectories:

y(t) ∼ 1
M

∑M
j=1 Px(t)(x(c) ⊕ x(aux,j), y(c) ⊕ y(aux,j)). (D.43)

This procedure introduces three hyperparameters: the distribution from which to
draw inputs r, the length of trajectories R, and the number of trajectories to sample
M .

In the following experiments, we set the distribution r to be uniform over the
training domain with no dependence on the context set or target point of interest:
r = Uniform([b, h]), where b and h are the lower and upper bounds of the training
domain, respectively. One could experiment with other choices for the distribution r.
The trajectory length R is chosen between 03 and 8, and the number of trajectories M
is chosen between 1 and 128.

3A trajectory length of 0 is equivalent to the standard test-time procedure.

238 Chapter 6 Supplementary Material

D.13.1 Generated Data

We create three data generating processes for our experiments: a mixture of functions,
random sawtooth functions, and random audio-like functions. The first two experiments
have multi-modal true marginals, whereas the last has heavy-tailed marginals.

Function mixture. The function mixture data are generated by choosing one
of the following three functions, the first with a probability of 1

4 , the second with a
probability of 1

2 , and the third with a probability of 1
4 :

y = x2 + ϵ, ϵ ∼ N (0, 0.25), (D.44)
y = x+ ϵ, ϵ ∼ N (0, 0.0625), (D.45)
y = −x+ ϵ, ϵ ∼ N (0, 0.25). (D.46)

Sawtooth. The sawtooth data are generated from the following function:

y(x) = [ω(dx− ϕ)] mod 1 (D.47)

We sample the frequency ω ∼ Unif([3, 5]), the direction d as either −1 or 1 with equal
probability, and the shift as ϕ ∼ Unif([1

ω
, 1]).

Synthetic Audio. Synthetic audio data are generated by convolving a Dirac
comb4 with a truncated decaying sum of sinusoids:

s(t) =

e
− t

τ [sin(ω1t) + sin(ω2t)] for 0 ≤ t < T,

0 otherwise,
(D.48)

f(x) = CombT (x) ∗ s(x), (D.49)
y = f(x) + ϵ where ϵ ∼ N (0, 0.001) (D.50)

where

ω1, ω2 ∼ Unif([50, 70]), T ∼ Unif([0.75, 1.25]), τ ∼ Unif([0.1, 0.3]). (D.51)

We truncate the waves up to the period length, because otherwise the convolution
with the Dirac comb would lead to increasing amplitude, resulting in a non-stationary
process.

4The Dirac comb is defined as CombT (t) :=
∑∞

k=−∞ δ(t− kT) for given period P .

D.13 Alternate AR Procedure with Auxiliary Data 239

Experiment ConvCNP ConvCNP (AuxAR)

Function Mixture −0.63± 0.20 −0.46± 0.15
Sawtooth 1.46± 0.30 1.64± 0.28
Synthetic Audio 0.12± 0.14 0.55± 0.10

Table D.16 Using autoregressive sampling for marginal approximation improves held-out
log-likelihoods on all experiments. Values are normalized by the number of target points.
Values which are significantly best (p < 0.05) are shown in bold.

D.13.2 Training

For the function mixture experiment, no training is required because we use the
analytically derived ideal CNP π∞ as our model. See Section 6.2.

For the sawtooth and synthetic audio experiments, we train ConvCNP models. We
train each model for 100 epochs using 1024 batches per epoch with a batch size of
16. We discretise the encoder by evaluating 64 points per unit. We use a margin of
0.1, and a stride length of 2 for each of the 6 layers of the U-Net. Each layer has 64
channels. The receptive field size from this combination of parameters is 6.953.

During training, we sample a number of context points between uniformly at random
from {0,. . . ,75}, and we sample exactly 100 target points. The context points and
target points are sampled uniformly from [−2, 2]. We use the Adam optimizer with a
learning rate of 3× 10−4.

D.13.3 Results

Model 0 1 2 4 8 16

ConvCNP −0.47±0.07 −0.45±0.18 −0.24±0.12 −0.12±0.12 0.36±0.15 1.07±0.18
ConvCNP (AuxAR) 0.02±0.11 0.19±0.11 0.24±0.12 0.31±0.11 0.74±0.10 1.27±0.12

Table D.17 Log likelihood values for varying context sizes using ConvCNP and ConvCNP
(AuxAR) using the function mixture data generator. Column headers indicate the context set
size. Log-likelihoods are shown in bold when they are significantly best (p < 0.05). Column
headers are context sizes. Errors indicate central 95% confidence interval.

In Table D.16, we see that using this procedure improves the held-out log-likelihoods
for all of the experiments. We can better understand the utility of this method by
observing the performance for different context sizes in Tables D.18 and D.17. For
example, the sawtooth data results in Table D.18 show that, for context set sizes 16,
the AR method provides no benefits. The increased flexibility of this AR method is
not needed in this case — a Gaussian predictive models the marginal sufficiently well.

240 Chapter 6 Supplementary Material

Model 0 1 2 4 8 16 32

ConvCNP −0.18±0.00 −0.14±0.02 −0.02±0.05 0.42±0.19 1.89±0.23 3.06±0.13 3.54±0.08
ConvCNP (AuxAR) −0.21±0.02 −0.09±0.04 0.08±0.08 0.95±0.16 2.37±0.15 3.03±0.13 3.51±0.08

Table D.18 Log likelihood values for varying context sizes using ConvCNP and ConvCNP
(AuxAR) using the sawtooth data generator. Column headers indicate the context set size..
Log-likelihoods are shown in bold when they are significantly best (p < 0.05). Column
headers are context sizes. Errors indicate central 95% confidence interval.

Model 0 1 2

ConvCNP −1.40±0.11 −0.91±0.28 −0.36±0.20
ConvCNP (AuxAR) −1.05±0.11 −0.63±0.23 −0.29±0.17

Table D.19 Log likelihood values for varying context sizes using ConvCNP and ConvCNP
(AuxAR) using the function mixture data generator. Column headers indicate the context set
size. Log-likelihoods are shown in bold when they are significantly best (p < 0.05). Column
headers are context sizes. Errors indicate central 95% confidence interval.

For context set sizes of 4 and 8, on the other hand, we see significant improvements
using the AR method. Similarly, for the synthetic audio data results in Table D.17, we
see improvements using the ConvCNP (AuxAR) for all context set sizes except 16.

The autoregressive sampling with auxiliary data method shown here shows promise
for improving modeling of processes with multi-modal and heavy-tailed marginal
distributions — all with no changes to the training procedure. The scenarios where
this method are most useful are highly contingent upon the context set size, because
of its impact how well the marginals are modeled by Gaussians.

D.13 Alternate AR Procedure with Auxiliary Data 241

zhr(•) = CNNhr


 zmr(•)

data(Dhr)
density(Dhr)




zmr(•) = CNNmr


 zlr(•)

data(Dmr)
density(Dmr)




zlr(•) = CNNlr

([
data(Dlr)

density(Dlr)

])

0.01◦ (✓), local to target points (✗)

0.75◦ (✗), covering all of Germany (✓)

0.1◦ (✓), covering a medium-sized square (✓)

resolution of discretisation

positioning of discretisation

Fig. D.11 Multiscale architecture for the AR ConvCNP. A cascade of three convolutional deep sets
(Gordon et al., 2020) representing a low-resolution, medium-resolution, and high-resolution component.
Shows the resolution and positioning of the internal discretisation for every convolutional deep set.
The context set D = Dlr ∪Dmr ∪Dhr is also divided into a low-resolution Dlr, medium-resolution
Dmr, and high-resolution component Dhr. The low-resolution context data Dlr consists of the 25
coarse-grained ERA-Interim reanalysis variables. The medium-resolution Dmr and high-resolution
context data Dhr both consist of the station observations and the 1 km–resolution elevation data.
The functions data(D) and density(D) produce respectively the data channel and density channel
for context data D; see Gordon et al. (2020). The variables zlr(•), zmr(•), and zhr(•) represent
intermediate representations as continuous functions, and the maps CNNlr, CNNmr, and CNNhr are
translation-equivariant maps between functions on X . Following the construction of the ConvCNP
(Gordon et al., 2020), these maps are all implemented with convolutional neural networks (CNN)
using a discretisation. For CNNlr, the internal discretisation is the 0.75◦-resolution grid corresponding
to the 25 coarse-grained ERA-Interim reanalysis variables. For CNNmr, the internal discretisation
is a 0.1◦-resolution grid spanning 5◦ more than the most extremal target inputs; the discretisation
does not depend on the context set. For CNNhr, the internal discretisation is a 0.01◦-resolution grid
spanning 0.25◦ more than the most extremal target inputs; the discretisation also does not depend on
the context set.

Index

S-invariant function, 16
Sn-invariant function, 16

amortized variational inference, 23
approximate Bayesian computation, 38
attentive conditional neural process, 24
attentive GNP, 71
attentive latent neural process, 24
attentive neural process, 24
AutoML, 106
autoregressive CNP, 88
autoregressive models, 94
autoregressive sampling with auxiliary data,

106, 237
autoregressively consistent, 20

Bayesian optimization, 65

CelebA, 39, 158
conditional neural processes, 17
context set, 11
convolutional DeepSet, 31
convolutional GNP, 71
convolutional latent neural processes, 46
copula processes, 82

data assimilation, 98
data sets, 11
De Finetti’s theorem, 15
decoder, 18
deep kernels, 82

DeepSets, 16
DeepSets universal representation

theorems, 16
density channel, 52
deterministic path, 25
diffusion models, 94

ECMWF ERA5 dataset, 99
electroencephalogram dataset, 78, 97
encoder, 18
ERA5-Land dataset, 64

FullConvGNP, 67
functional mapping on sets, 30
functional representation of a set, 30

Gaussian copula neural process, 71
Gaussian neural processes, 69
Gaussian prediction map, 69
Gaussian process, 13
generative adversarial networks, 93

Hudson’s Bay lynx–hare data set, 38
Hudson’s Bay hare–lynx data set, 96

ideal CNP, 90
ideal NP, 90
invertible transformation, 71

Kolmogorov extension theorem, 12
Kolmogorov-consistent, 12
kvv covariance, 70

244 Index

latent neural processes, 21
latent variable path, 25
learning to learn, 9
linear covariance, 70
Lotka–Volterra equations, 38, 76, 96, 220

mean-field predictive distribution, 20, 68
meta–data set, 11
meta-learning, 9
MNIST, 39, 63, 158
multiplicity, 31

neural process family of models, 14
noise GP, 48
normalising flows, 93
normalized convolution, 33

off the grid data, 28
on the grid data, 28

PLAsTiCC data set, 37
prediction map, 13

reanalysis data, 80, 99
receptive field, 40, 41

sim-to-real transfer, 96
Sim2Real, 38
stationarity, 45
statistical downscaling, 80, 98
stochastic process, 11
SVHN, 39, 158

target set, 11
tasks, 11
Thompson sampling, 65
translation equivariance, 45
translation equivariant, 30

VALUE framework, 80

variational autoencoders, 94

zero-shot multi MNIST, 41, 63

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Motivation
	1.2 Overview and Main Contributions
	1.3 List of Publications

	2 Background
	2.1 Meta-Learning and Stochastic Processes
	2.1.1 Meta-Learning Problem Statement
	2.1.2 Stochastic Processes
	2.1.3 Prediction Map Formulation
	2.1.4 Gaussian Processes

	2.2 Neural Processes
	2.2.1 Defining a Stochastic Process
	2.2.2 Deep Sets
	2.2.3 Conditional Neural Processes
	2.2.4 Latent Neural Processes
	2.2.5 Attentive Neural Processes

	2.3 Conclusion and Discussion

	3 Convolutional Conditional Neural Processes
	3.1 Introduction
	3.1.1 Notation

	3.2 Translation Equivariance
	3.3 Convolutional Deep Sets
	3.3.1 Representations of Translation Equivariant Functions on Sets

	3.4 Convolutional Conditional Neural Processes
	3.5 Experiments and Results
	3.5.1 Synthetic 1D Experiments
	3.5.2 PLAsTiCC Experiments
	3.5.3 Predator-Prey Models: Sim2Real
	3.5.4 2D Image Completion Experiments

	3.6 Conclusion and Discussion

	4 Convolutional Latent Neural Processes
	4.1 Introduction
	4.2 Notation and Background
	4.2.1 Translation Equivariance and Stationarity
	4.2.2 Convolutional Conditional Neural Processes

	4.3 The Convolutional Latent Neural Process
	4.3.1 Parametrizing Translation Equivariant Maps to Stochastic Processes Using ConvLNPs
	4.3.2 Maximum Likelihood Learning of ConvLNPs

	4.4 The Latent Variable Interpretation of ConvLNPs
	4.4.1 A Variational Lower Bound Approach to ConvLNPs
	4.4.2 Maximum-Likelihood vs Variational Lower Bound Maximization for Training NPs
	4.4.3 Effect of Number of Samples Used During Training
	4.4.4 Effect of Number of Samples Used for Evaluation

	4.5 Experiments and Results
	4.5.1 1D Regression
	4.5.2 Image Completion
	4.5.3 Environmental Data

	4.6 Conclusion and Discussion

	5 Gaussian Neural Processes
	5.1 Introduction
	5.2 Gaussian Neural Processes
	5.3 Non-Gaussian prediction maps
	5.4 Computation time and memory comparison
	5.5 Experiments and Results
	5.5.1 Gaussian synthetic experiments
	5.5.2 Predator-Prey experiments
	5.5.3 Electroencephalogram experiments
	5.5.4 Temperature downscaling for environmental modelling

	5.6 Conclusion and Discussion

	6 Autoregressive Neural Processes
	6.1 Introduction
	6.2 Autoregressive Conditional Neural Processes
	6.3 Connections to Other Neural Distribution Estimators
	6.4 Experiments and Results
	6.4.1 Synthetically Generated Gaussian and Non-Gaussian Data
	6.4.2 Sim-to-Real Transfer with the Lotka–Volterra Equations
	6.4.3 Electroencephalogram experiments
	6.4.4 Environmental Modelling

	6.5 Conclusion and Discussion

	7 Conclusion and Discussion
	7.1 Summary of Contributions
	7.2 Future Work

	References
	Appendix A Chapter 3 Supplementary Material
	A.1 Theoretical Results and Proofs
	A.1.1 The Quotient Space An/Sn
	A.1.2 Embeddings of Sets Into an RKHS
	A.1.3 Proof of ConvCNP:thm:representation

	A.2 Baseline Neural Process Models
	A.3 1-Dimensional Experiments
	A.3.1 CNN Architectures
	A.3.2 Synthetic 1d Experimental Details and Additional Results
	A.3.3 PLAsTiCC Experimental Details
	A.3.4 Predator–Prey Experimental Details

	A.4 Image Experimental Details and Additional Results
	A.4.1 Experimental Details
	A.4.2 Zero Shot Multi MNIST (ZSMM) data
	A.4.3 ACNP and ConvCNP Qualitative Comparison
	A.4.4 Ablation Study: First Layer
	A.4.5 Qualitative Analysis of the First Filter
	A.4.6 Effect of Receptive Field on Translation Equivariance

	Appendix B Chapter 4 Supplementary Material
	B.1 Formal Definitions and Set-up
	B.2 Stationary Processes and Translation Equivariance
	B.3 Translation Equivariance of the ConvLNP
	B.4 Experimental Details on 1D Regression
	B.5 Additional Results on 1D Regression
	B.6 Experimental Details on Image Completion
	B.6.1 Data Details
	B.6.2 Training Details
	B.6.3 Architecture Details

	B.7 Additional results on image completion.
	B.8 Experimental Details on Environmental Data
	B.8.1 Data Details
	B.8.2 Gaussian Process Baseline
	B.8.3 ConvLNP Architecture and Training Details
	B.8.4 Prediction and Sampling
	B.8.5 Bayesian Optimization

	B.9 Additional Figures for Environmental Data
	B.9.1 Predictive density
	B.9.2 Additional Samples

	Appendix C Chapter 5 Supplementary Material
	C.1 Additional theoretical considerations
	C.1.1 Translation equivariance of the ConvGNP
	C.1.2 Normalising flows and general invertible maps

	C.2 Gaussian synthetic experiments
	C.3 Predator-prey synthetic experiments
	C.4 Electroencephalogram experiments
	C.5 Environmental experiments
	C.5.1 Experimental design
	C.5.2 Data
	C.5.3 Neural architectures and training
	C.5.4 Additional samples

	Appendix D Chapter 6 Supplementary Material
	D.1 Proof of Proposition 2
	D.2 Proof of Proposition 3
	D.3 Illustration of the AR procedure
	D.4 Number and Order of Target Points
	D.4.1 Effects of the Number of Target Points
	D.4.2 Effects of the Ordering of Target Points
	D.4.3 Analysis of AR CNPs for CNPs with Gaussian Marginals
	D.4.4 Effect of the random ordering on the spread of the log-likelihood

	D.5 Details for Figure 6.3
	D.6 Description of Models
	D.7 Training, Cross-Validation, and Evaluation Protocols
	D.8 Details of Synthetic Experiments
	D.8.1 Description of Experiments
	D.8.2 Multi-Modality of Predictions by AR ConvCNP
	D.8.3 Full Results

	D.9 Details of Sim-to-Real Transfer Experiments
	D.9.1 Description of Experiment
	D.9.2 Full Results

	D.10 Details of Electroencephalography Experiments
	D.11 Details of Environmental Data Assimilation Experiment
	D.11.1 Data considerations
	D.11.2 Model considerations
	D.11.3 Antarctic cloud cover model samples

	D.12 Details of Climate Downscaling Experiments
	D.12.1 Description of Experiment
	D.12.2 Multiscale Convolutional Architecture
	D.12.3 Architectures
	D.12.4 Training Details

	D.13 Alternate AR Procedure with Auxiliary Data
	D.13.1 Generated Data
	D.13.2 Training
	D.13.3 Results

	Index

